首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6244篇
  免费   444篇
  国内免费   6篇
  6694篇
  2023年   44篇
  2022年   110篇
  2021年   181篇
  2020年   106篇
  2019年   117篇
  2018年   183篇
  2017年   134篇
  2016年   222篇
  2015年   310篇
  2014年   324篇
  2013年   441篇
  2012年   522篇
  2011年   529篇
  2010年   320篇
  2009年   289篇
  2008年   371篇
  2007年   415篇
  2006年   356篇
  2005年   330篇
  2004年   272篇
  2003年   261篇
  2002年   244篇
  2001年   53篇
  2000年   38篇
  1999年   40篇
  1998年   47篇
  1997年   56篇
  1996年   28篇
  1995年   36篇
  1994年   31篇
  1993年   34篇
  1992年   23篇
  1991年   17篇
  1990年   15篇
  1989年   11篇
  1988年   17篇
  1987年   11篇
  1986年   11篇
  1985年   7篇
  1984年   22篇
  1983年   15篇
  1982年   10篇
  1981年   13篇
  1980年   13篇
  1979年   6篇
  1978年   5篇
  1977年   8篇
  1976年   5篇
  1975年   8篇
  1973年   5篇
排序方式: 共有6694条查询结果,搜索用时 15 毫秒
341.
Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells   总被引:1,自引:0,他引:1  
Antigen-mediated activation of mast cells results in Ca2+-dependent exocytosis of preformed mediators of the inflammatory response. To investigate the role of secretory vesicle motility in this response, we have performed time-lapse confocal microscopy on RBL-2H3 cells transfected with a green fluorescent protein-Fas ligand fusion protein (GFP-FasL). Green fluorescent protein-labeled vesicles exhibit rapid, bidirectional movement in both resting and activated cells and can be localized adjacent to microtubules. Colchicine treatment inhibits the motility of secretory vesicles as measured by fluorescence recovery after photobleaching (FRAP). Colchicine also inhibits both the extent and the rate of exocytosis triggered by receptor activation or by Ca2+ ionophore, demonstrating that microtubule-dependent movement of secretory vesicles plays an important role in the exocytic response .  相似文献   
342.
Mapelli M  Musacchio A 《Neuro-Signals》2003,12(4-5):164-172
Cyclin-dependent kinase 5 (CDK5) plays an essential role in the development of the central nervous system during mammalian embryogenesis. In the adult, CDK5 is required for the maintenance of neuronal architecture. Its deregulation has profound cytotoxic effects and has been implicated in the development of neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis. In this review, we concentrate on the regulation of CDK5 activity, privileging a structural perspective based on a decade of structural analyses of different members of the CDK family, including CDK2 and CDK5. We review the activation mechanism of CDK5 and discuss its differences and similarities with that of CDK2 and of the other members of the CDK family.  相似文献   
343.
Stenotrophomonas maltophilia is an emerging nosocomial bacterial pathogen associated with several infectious diseases and opportunistic infections, especially in immunocompromised patients. These bacteria adhere avidly to medical implants and catheters forming a biofilm that confers natural protection against host immune defences and different antimicrobial agents. The nature of the bacterial surface factors involved in biofilm formation on inert surfaces and in adherence of S. maltophilia to epithelial cells is largely unknown. In this study, we identified and characterized fimbrial structures produced by S. maltophilia grown at 37 degrees C. The S. maltophilia fimbriae 1 (SMF-1) are composed of a 17 kDa fimbrin subunit which shares significant similarities with the N-terminal amino acid sequences of several fimbrial adhesins (G, F17, K99 and 20K) found in Escherichia coli pathogenic strains and the CupA fimbriae of Pseudomonas aeruginosa. All of the clinical S. maltophilia isolates tested produced the 17 kDa fimbrin. Antibodies raised against SMF-1 fimbriae inhibited the agglutination of animal erythrocytes, adherence to HEp-2 cells and biofilm formation by S. maltophilia. High resolution electron microscopy provided evidence of the presence of fimbriae acting as bridges between bacteria adhering to inert surfaces or to cultured epithelial cells. This is the first characterization of fimbriae in this genus. We provide compelling data suggesting that the SMF-1 fimbriae are involved in haemagglutination, biofilm formation and adherence to cultured mammalian cells.  相似文献   
344.
There is controversy about the effect of saturated and polyunsaturated fats on 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the main regulatory enzyme of cholesterogenic pathway. Results from dietary studies are difficult to interpret because diets normally contain a mixture of fatty acids. Therefore, we have used Reuber H35 hepatoma cells whose phospholipids were enriched in different individual fatty acids and have studied their effects on the cellular reductase activity. Lauric, myristic, eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids were supplemented to the culture medium coupled to bovine serum albumin. The four fatty acids were incorporated into phospholipids from cells grown in media containing whole serum or lipoprotein-poor serum (LPPS). Reductase activity of cells cultivated in a medium with LPPS was three to four times higher than those cultivated in medium with whole serum. Saturated fatty acids increased reductase activity of cells grown in medium with whole serum, whereas n-3 polyunsaturated fatty acids (PUFA) decreased it. However, both saturated and polyunsaturated fatty acids increased reductase activity when serum lipoproteins were removed. In conclusion, this is one of the first reports demonstrating that saturated and n-3 PUFA only show differential effects on HMG-CoA reductase activity in the presence of lipoproteins.  相似文献   
345.
346.
We systematically investigated the efficiency of Aspergillus nidulans transformation using protoplasts prepared from different stages of conidiospore germination and young mycelium. Using standard integrative plasmids, increased transformation yields were obtained with protoplasts isolated from a specific stage coincident with germ tube emergence. This increase ranged, on the average, from two- to eightfold depending on different plasmids used. Transformation efficiencies with a replicative plasmid were similar to those obtained using previously described methods. Although this observation suggests that elevated transformation efficiencies might be due to increased efficiency of recombination between plasmid and genomic sequences, we cannot exclude other factors associated with the particular developmental stage used. In the course of this study, we also examined the effect of other parameters that might enhance transformation yields. The method described is also significantly easier and faster than other current methods.  相似文献   
347.
348.
Resistance of breast carcinomas to hormonal therapy is a clinical obstacle for the treatment of breast cancer. The molecular mechanisms and the factors involved in the progression of tumors from an estrogen (E2)-dependent to an E2-independent phenotype are not entirely understood. Heregulin (HRG) is a pleiotropic growth factor that binds to the erbB family of receptors, which are correlated with breast cancer progression and an aggressive phenotype in the breast carcinomas overexpressing the receptors. Previous studies in transgenic mice have shown that HRG is sufficient to induce mammary gland transformation and proliferation in the presence of hormonal stimulation. However, these studies did not address the important issue of the E2 independence that is part of the progression of breast cancer. In this study, we investigated the role of HRG in E2 independence. We were able to determine that HRG up-regulation was sufficient for the development of mammary tumors in the absence of E2 stimulation, a situation that mimics the progression of the human disease. We demonstrated that in ovariectomized nude mice, HRG induced E2 independence and antiestrogen resistance and promoted metastasis and preneoplastic transformation of the adjacent mouse mammary tissue. We show that one of the mechanisms by which HRG achieves the aggressive phenotype may be mediated via an increase in activated mitogen-activated protein kinase, an increase in a matrix-degrading enzyme, MMP-9, and the overexpression of vascular endothelial growth factors. The up-regulation of these genes occurred in the absence of any additional stimulation, in an autocrine manner. Our data provide new insights into the mechanisms of breast cancer progression in vivo, and reinforce the important role that HRG plays in this process.  相似文献   
349.
CSK family contains two protein tyrosine kinases: Csk (C-terminal Src kinase) and Chk (Csk homologous kinase). They are responsible for phosphorylating Src family protein tyrosine kinases on a C-terminal Tyr (Tyr527) and negatively regulating their activities. However, Chk and Csk have different expression patterns, mechanisms of regulation, and different biological functions, and appear to play different roles in the development of breast cancer. To obtain pure human Chk for biochemical characterization, its coding region was amplified by polymerase chain reaction and expressed as a fusion protein with glutathione S-transferase in Escherichia coli. The enzyme was highly expressed but unusually prone to proteolytic degradation during purification. Expression of the enzyme as a dual fusion protein with glutathione S-transferase on N-terminus and streptag, a 10 amino acid peptide, on C-terminus allowed purification of the full-length fusion protein. The purified enzyme was able to phosphorylate and inactivate Src. Chk (no inhibition up to 18.5 microM) and Csk (IC(50)= 1 microM) were differentially inhibited by PP2, probably due to the size difference of one residue (Thr265 in Csk versus Met304 in Chk) in the ATP-binding domain. The expression, purification, and initial characterizations of Chk provided an important step toward full characterization of Chk and Csk, two important enzymes in cellular regulation.  相似文献   
350.
We constructed a strain of Escherichia coli overproducing 6His-tagged Eco29kI by placing the coding sequence under control of a strong bacteriophage T5 promoter. The yield of 6His-Eco29kI restriction endonuclease expression could be increased to about 20% of the total cellular protein, but inclusion bodies formed consisting of insoluble 6His-Eco29kI protein. We developed a fast and effective protocol for purification of the homogeneous enzyme from both soluble and insoluble fractions and established their identity by catalytic activity assay. The isolated enzymes were tested for recognition specificity and optimal reaction conditions as a function of NaCl and KCl concentrations, temperature, and pH compared with the native Eco29kI restriction endonuclease. The 6His-tagged enzyme retained the specificity of the native protein but had an altered optimum of its catalytic reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号