首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1495篇
  免费   92篇
  1587篇
  2021年   7篇
  2020年   9篇
  2019年   10篇
  2018年   14篇
  2017年   13篇
  2016年   28篇
  2015年   34篇
  2014年   51篇
  2013年   96篇
  2012年   110篇
  2011年   97篇
  2010年   65篇
  2009年   81篇
  2008年   97篇
  2007年   88篇
  2006年   89篇
  2005年   89篇
  2004年   87篇
  2003年   83篇
  2002年   91篇
  2001年   9篇
  2000年   13篇
  1999年   20篇
  1998年   25篇
  1997年   16篇
  1996年   19篇
  1995年   15篇
  1994年   15篇
  1993年   13篇
  1992年   19篇
  1990年   11篇
  1989年   6篇
  1988年   7篇
  1987年   10篇
  1985年   8篇
  1984年   13篇
  1983年   14篇
  1982年   10篇
  1981年   7篇
  1980年   11篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   8篇
  1974年   5篇
  1972年   5篇
  1971年   4篇
  1968年   4篇
  1963年   5篇
  1962年   4篇
排序方式: 共有1587条查询结果,搜索用时 15 毫秒
991.
The metazoan nuclear envelope (NE) breaks down and re-forms during each cell cycle. Nuclear pore complexes (NPCs), which allow nucleocytoplasmic transport during interphase, assemble into the re-forming NE at the end of mitosis. Using in vitro NE assembly, we show that the vertebrate homologue of MEL-28 (maternal effect lethal), a recently discovered NE component in Caenorhabditis elegans, functions in postmitotic NPC assembly. MEL-28 interacts with the Nup107-160 complex (Nup for nucleoporin), an important building block of the NPC, and is essential for the recruitment of the Nup107-160 complex to chromatin. We suggest that MEL-28 acts as a seeding point for NPC assembly.  相似文献   
992.

Background

The major bottleneck for determination of 3 D structures of proteins using X-rays is the production of diffraction quality crystals. Often proteins are subjected to chemical modification to improve the chances of crystallization

Results

Here, we report the successful crystallization of a nuclease employing a reductive methylation protocol. The key to crystallization was the successful introduction of 44 new cohesive (NZ) CH...O contacts (3.2 – 3.7 Å) by the addition of 2 methyl groups to the side chain amine nitrogen (NZ) of 9 lysine residues of the nuclease. The new contacts dramatically altered the crystallization properties of the protein, resulting in crystals that diffracted to 1.2 Å resolution. Analytical ultracentrifugation analysis and thermodynamics results revealed a more compact protein structure with better solvent exclusion of buried Trp residues in the folded state of the methylated protein, assisting crystallization.

Conclusion

In this study, introduction of novel cohesive (NZ)CH...O contacts by reductive methylation resulted in the crystallization of a protein that had previously resisted crystallization in spite of extensive purification and crystallization space screening. Introduction of (NZ)CH...O contacts could provide a solution to crystallization problems for a broad range of protein targets.  相似文献   
993.
The Ni-Fe carbon monoxide (CO) dehydrogenase II (CODHII(Ch)) from the anaerobic CO-utilizing hydrogenogenic bacterium Carboxydothermus hydrogenoformans catalyzes the oxidation of CO, presumably at the Ni-(micro(2)S)-Fe1 subsite of the [Ni-4S-5S] cluster in the active site. The CO oxidation mechanism proposed on the basis of several CODHII(Ch) crystal structures involved the apical binding of CO at the nickel ion and the activation of water at the Fe1 ion of the cluster. To understand how CO interacts with the active site, we have studied the reactivity of the cluster with potassium cyanide and analyzed the resulting type of nickel coordination by x-ray absorption spectroscopy. Cyanide acts as a competitive inhibitor of reduced CODHII(Ch) with respect to the substrate CO and is therefore expected to mimic the substrate. It inhibits the enzyme reversibly, forming a nickel cyanide. In this reaction, one of the four square-planar sulfur ligands of nickel is replaced by the carbon atom of cyanide, suggesting removal of the micro(2)S from the Ni-(micro(2)S)-Fe1 subsite. Upon reactivation of the inhibited enzyme, cyanide is released, and the square-planar coordination of nickel by 4S ligands is recovered, which includes the reformation of the Ni-(micro(2)S)-Fe1 bridge. The results are summarized in a model of the CO oxidation mechanism at the [Ni-4Fe-5S] active site cluster of CODHII(Ch) from C. hydrogenoformans.  相似文献   
994.
The voltage-dependent anion channel (VDAC) is the major protein found in the outer membrane of mitochondria. The channel is responsible for the exchange of ATP/ADP and the translocation of ions and other small metabolites over the membrane. In order to obtain large amounts of pure and suitably folded human VDAC for functional and structural studies, the genes of the human isoforms I and II (HVDAC1 and HVDAC2) were cloned in Escherichia coli. High-level expression led to inclusion body formation. Both proteins could be refolded in vitro by adding denatured protein to a solution of zwitterionic or nonionic detergents. A highly efficient and fast protocol for refolding was developed that yielded more than 50 mg of pure human VDACs per liter of cell culture. The native and functional state of the refolded porins was probed by Fourier transform infrared spectroscopy to determine the secondary structure composition and by electrophysiological measurements, demonstrating the pore-forming activity of HVDAC1. Furthermore, binding of HVDAC1 to immobilized ATP was demonstrated. Limited proteolysis of HVDAC1 protein embedded in detergent micelles in combination with matrix-assisted laser desorption ionization mass spectrometric analysis was applied to identify micelle-exposed regions of the protein and to develop an improved topology model. Our analysis strongly suggests a 16-stranded, antiparallel beta-barrel with one large and seven short loops and turns. Initial crystallization trials of the protein yielded crystals diffracting to 8 Angstrom resolution.  相似文献   
995.
Albeit silks are fairly well understood on a molecular level, their hierarchical organisation and the full complexity of constituents in the spun fibre remain poorly defined. Here we link morphological defined structural elements in dragline silk of Nephila clavipes to their biochemical composition and physicochemical properties. Five layers of different make-ups could be distinguished. Of these only the two core layers contained the known silk proteins, but all can vitally contribute to the mechanical performance or properties of the silk fibre. Understanding the composite nature of silk and its supra-molecular organisation will open avenues in the production of high performance fibres based on artificially spun silk material.  相似文献   
996.
Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant disease that usually manifests itself within the fifth decade. The most prominent symptoms are progressive ptosis, dysphagia, and proximal limb muscle weakness. The disorder is caused by trinucleotide (GCG) expansions in the N-terminal part of the poly(A)-binding protein 1 (PABPN1) that result in the extension of a 10-alanine segment by up to seven more alanines. In patients, biopsy material displays intranuclear inclusions consisting primarily of PABPN1. Poly l-alanine-dependent fibril formation was studied using the recombinant N-terminal domain of PABPN1. In the case of the protein fragment with the expanded poly l-alanine sequence [N-(+7)Ala], fibril formation could be induced by low amounts of fragmented fibrils serving as seeds. Besides homologous seeds, seeds derived from fibrils of the wild-type fragment (N-WT) also accelerated fibril formation of N-(+7)Ala in a concentration-dependent manner. Seed-induced fibrillation of N-WT was considerably slower than that of N-(+7)Ala. Using atomic force microscopy, differences in fibril morphologies between N-WT and N-(+7)Ala were detected. Furthermore, fibrils of N-WT showed a lower resistance against solubilization with the chaotropic agent guanidinium thiocyanate than those from N-(+7)Ala. Our data clearly reveal biophysical differences between fibrils of the two variants that are likely caused by divergent fibril structures.  相似文献   
997.

Background  

Metabolic correlation networks are derived from the covariance of metabolites in replicates of metabolomics experiments. They constitute an interesting intermediate between topology (i.e. the system's architecture defined by the set of reactions between metabolites) and dynamics (i.e. the metabolic concentrations observed as fluctuations around steady-state values in the metabolic network).  相似文献   
998.
Translational research is progressing toward combined genomics and proteomics analyses of small and precious samples. In our analyses of spinal cord material, we systematically evaluated disruption and extraction techniques to determine an optimum process for the coupled analysis of RNA and protein from a single 5-mm segment of tissue. Analyses of these distinct molecular species were performed using microarrays and high resolution two-dimensional gels, respectively. Comparison of standard homogenization with automated frozen disruption (AFD) identified negligible differences in the relative abundance of genes (44) with all genes identified by either process. Analysis on either the Affymetrix or Applied Biosystems Inc. gene array platforms provided good correlations between the extraction techniques. In contrast, the AFD technique enabled identification of more unique proteins from spinal cord tissue than did standard homogenization. Furthermore use of an optimized CHAPS/urea extraction provided better protein recovery, as shown by quantitative two-dimensional gel analyses, than did solvent precipitation during TRIzol-based RNA extraction. Thus, AFD of tissue samples followed by protein and RNA isolation from separate aliquots of the frozen powdered sample is the most effective route to ensure full, quantitative analyses of both molecular entities.  相似文献   
999.
The human cytosolic sulfotransfases (hSULTs) comprise a family of 12 phase II enzymes involved in the metabolism of drugs and hormones, the bioactivation of carcinogens, and the detoxification of xenobiotics. Knowledge of the structural and mechanistic basis of substrate specificity and activity is crucial for understanding steroid and hormone metabolism, drug sensitivity, pharmacogenomics, and response to environmental toxins. We have determined the crystal structures of five hSULTs for which structural information was lacking, and screened nine of the 12 hSULTs for binding and activity toward a panel of potential substrates and inhibitors, revealing unique “chemical fingerprints” for each protein. The family-wide analysis of the screening and structural data provides a comprehensive, high-level view of the determinants of substrate binding, the mechanisms of inhibition by substrates and environmental toxins, and the functions of the orphan family members SULT1C3 and SULT4A1. Evidence is provided for structural “priming” of the enzyme active site by cofactor binding, which influences the spectrum of small molecules that can bind to each enzyme. The data help explain substrate promiscuity in this family and, at the same time, reveal new similarities between hSULT family members that were previously unrecognized by sequence or structure comparison alone.  相似文献   
1000.
Climate warming affects plant physiology through genetic adaptation and phenotypic plasticity, but little is known about how these mechanisms influence ecosystem processes. We used three elevation gradients and a reciprocal transplant experiment to show that temperature causes genetic change in the sedge Eriophorum vaginatum. We demonstrate that plants originating from warmer climate produce fewer secondary compounds, grow faster and accelerate carbon dioxide (CO2) release to the atmosphere. However, warmer climate also caused plasticity in E. vaginatum, inhibiting nitrogen metabolism, photosynthesis and growth and slowing CO2 release into the atmosphere. Genetic differentiation and plasticity in E. vaginatum thus had opposing effects on CO2 fluxes, suggesting that warming over many generations may buffer, or reverse, the short‐term influence of this species over carbon cycle processes. Our findings demonstrate the capacity for plant evolution to impact ecosystem processes, and reveal a further mechanism through which plants will shape ecosystem responses to climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号