首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   13篇
  214篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   7篇
  2014年   9篇
  2013年   15篇
  2012年   16篇
  2011年   16篇
  2010年   8篇
  2009年   21篇
  2008年   19篇
  2007年   9篇
  2006年   18篇
  2005年   16篇
  2004年   11篇
  2003年   10篇
  2002年   9篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1976年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
71.
Laue G  Preston CA  Baldwin IT 《Planta》2000,210(3):510-514
Nicotiana repanda Wildenow ex Lehmann acylates nornicotine in its trichomes to produce N-acyl-nornicotine (NacNN) alkaloids which are dramatically more toxic than nicotine is to the nicotine-adapted herbivore, Manduca sexta. These NacNNs, like nicotine, were induced by methyl jasmonate (MeJA) and wounding, but the 2-fold increase in NacNN pools was much faster (within 6 h) than the MeJA-induced increase in nornicotine pools (24 h to 4 d), its parent substrate. When 15NO3 pulse-chase experiments with intact and induced plants were used to follow the incorporation of 15N into alkaloids in different plant parts over the plant's lifetime, it was found that the root nicotine pool was most rapidly labeled, followed by the shoot nornicotine and NacNN pools. After 3 d, 3.12% of 15N acquired was in nicotine (0.93%), nornicotine (0.32%) and NacNNs (1.73%) while only 0.14% was in anabasine. Once NacNNs are externalized to the leaf surface, they are not readily re-distributed within the plant and are lost with senescing leaves. The wound- and MeJA-induced N-acylation of nornicotine is independent of induced changes in nornicotine pools and the rapidity of the response suggests its importance in defense against herbivores. Received: 3 July 1999 / Accepted: 17 September 1999  相似文献   
72.
The dioecious species Urtica dioica harbours wide variation in sex ratio of seeds. We conducted a series of crosses to analyse the genetic basis of sex determination in this species. Dutch populations of U. dioica contain low proportions of monoecious individuals beside male and female plants. Self-pollination of monoecious plants always yielded female, male and monoecious plants, generally in a ratio of one female to three male/monoecious individuals. This motivated us to write down a simple model in which gender is determined by one major sex-determination locus with four alleles. In the model males and monoecious plants have distinct genotypes but are both heterozygous at the sex-determination locus. We first made crosses among progeny obtained after self-pollination of monoecious plants. These crosses showed that the monoecious trait generally showed Mendelian inheritance and was passed on to the next generation via both pollen and seeds. Further crosses between monoecious plants and plants from dioecious system indicated that alleles from the dioecious system are often dominant. However, many exceptions to our genetic model are observed which suggest that dominance is incomplete and/or that more genes are involved in sex determination. We discuss to what extent sex determination genes explain the strongly biased seed sex ratios and argue that additional genes, for instance genes for female choice, must also be involved.  相似文献   
73.
Pancreatic acinar cells depend on the integrity of the cytoskeleton for regulated secretion. Stimulation of isolated rat pancreatic acini with the secretagogue CCK serves as a model for human acute edematous pancreatitis. It induces the breakdown of the actin filament system (F-actin) with the consecutive inhibition of secretion and premature activation of digestive enzymes. However, the mechanisms that regulate F-actin breakdown are largely unknown. Plectin is a versatile cytolinker protein regulating F-actin dynamics in fibroblasts. It was recently demonstrated that plectin is a substrate of caspase 8. In pancreatic acinar cells, plectin strongly colocalizes with apical and basolateral F-actin. Supramaximal secretory stimulation of acini with CCK leads to a rapid redistribution and activation of caspase 8, followed by degradation of plectin that in turn precedes the F-actin breakdown. Inhibition of caspase 8 before CCK hyperstimulation prevents plectin cleavage, stabilizes F-actin morphology, and reverses the inhibition of secretion. Thus we propose that the caspase 8-mediated degradation of plectin represents a critical biochemical event during CCK-induced secretory blockade and cell injury.  相似文献   
74.
The assembly of bacterial membrane proteins with large periplasmic loops is an intrinsically complex process because the SecY translocon has to coordinate the signal recognition particle-dependent targeting and integration of transmembrane domains with the SecA-dependent translocation of the periplasmic loop. The current model suggests that the ATP hydrolysis by SecA is required only if periplasmic loops larger than 30 amino acids have to be translocated. In agreement with this model, our data demonstrate that the signal recognition particle- and SecA-dependent multiple spanning membrane protein YidC becomes SecA-independent if the large periplasmic loop connecting transmembrane domains 1 and 2 is reduced to less than 30 amino acids. Strikingly, however, we were unable to render single spanning membrane proteins SecA-independent by reducing the length of their periplasmic loops. For these proteins, the complete assembly was always SecA-dependent even if the periplasmic loop was reduced to 13 amino acids. If, however, the 13-amino acid-long periplasmic loop was fused to a downstream transmembrane domain, SecA was no longer required for complete translocation. Although these data support the current model on the SecA dependence of multiple spanning membrane proteins, they indicate a novel function of SecA for the assembly of single spanning membrane proteins. This could suggest that single and multiple spanning membrane proteins are processed differently by the bacterial SecY translocon.  相似文献   
75.
The interaction between members of a gene network has an important impact on the variation of quantitative traits, and can influence the outcome of phenotype/genotype association studies. Three genes (Ppd-H1, HvCO1, HvFT1) known to play an essential role in the regulation of flowering time under long days in barley were subjected to an analysis of nucleotide diversity in a collection of 220 spring barley accessions. The coding region of Ppd-H1 was highly diverse, while both HvCO1 and HvFT1 showed a rather limited level of diversity. Within all three genes, the extent of linkage disequilibrium was variable, but on average only moderate. Ppd-H1 is strongly associated with flowering time across four environments, showing a difference of five to ten days between the most extreme haplotypes. The association between flowering time and the variation at HvFT1 and HvCO1 was strongly dependent on the haplotype present at Ppd-H1. The interaction between HvCO1 and Ppd-H1 was statistically significant, but this association disappeared when the analysis was corrected for the geographical origin of the accessions. No association existed between flowering time and allelic variation at HvFT1. In contrast to Ppd-H1, functional variation at both HvCO1 and HvFT1 is limited in cultivated barley.  相似文献   
76.
Capsicum species are commercially grown for pepper production. This crop suffers severely from thrips damage and the identification of natural sources of thrips resistance is essential for the development of resistant cultivars. It is unclear whether resistance to Frankliniella occidentalis as assessed in a specific environment holds under different conditions. Additionally, other thrips species may respond differently to the plant genotypes. Screening for robust and general resistance to thrips encompasses testing different Capsicum accessions under various conditions and with different thrips species. We screened 11 Capsicum accessions (C. annuum and C. chinense) for resistance to F. occidentalis at three different locations in the Netherlands. Next, the same 11 accessions were screened for resistance to Thrips palmi and Scirtothrips dorsalis at two locations in Asia. This resulted in a unique analysis of thrips resistance in Capsicum at five different locations around the world. Finally, all accessions were also screened for resistance to F. occidentalis in the Netherlands using a leaf disc choice assay, allowing direct comparison of whole plant and leaf disc assays. Resistance to F. occidentalis was only partially consistent among the three sites in the Netherlands. The most susceptible accessions were consistently susceptible, but which accession was the most resistant differed among sites. In Asia, one C. chinense accession was particularly resistant to S. dorsalis and T. palmi, but this was not the most resistant accession to F. occidentalis. Overall, resistance to F. occidentalis correlated with S. dorsalis but not with T. palmi resistance in the C. annuum accessions. Damage inflicted on leaf discs reflected damage on the whole plant level. Our study showed that identifying broad spectrum resistance to thrips in Capsicum may prove to be challenging. Breeding programmes should focus on developing cultivars suitable for growing in defined geographic regions with specific thrips species and abiotic conditions.  相似文献   
77.
Our understanding of the causative agents of fungal diseases has changed considerably in recent years due to molecular studies that compare DNA across a wide range of fungi, including human and animal pathogens. In many cases, what had once been understood as traditional species were found to be species complexes. Importantly, members of such complexes may differ in pathogenicity and susceptibility to antifungals, which suggests a need for accurate identification to provide optimal patient care. This article presents a few striking examples from Zygomycetes, Ascomycetes, and Basidiomycetes.  相似文献   
78.
North-Rhine Westphalia is the center of the German and European steel production. Its steel industry is heavily based on the primary production route and emits up to 30 Mt CO2 annually. One possible and increasingly prominent alternative to reduce these emissions is the hydrogen-based direct reduction. While this technology allows for a near climate-neutral production of primary steel, it poses substantial impacts on regional energy and material flows. Hence, the aim of this paper is to quantify the alterations in energy and material flows over time via integrating top-down energy and material flow models with bottom-up process models. The resulting values of emissions, energy, and material flows are then used to develop prospective scenarios that depict the requirements and consequences of potential pathways toward a climate-neutral steel production by 2045. The outcomes show that decarbonizing the North Rhine-Westphalian steel industry leads to an additional demand for renewable energies of up to 52.5 TWh per year, which represents 10% of the current electricity production in Germany. As securing the green electricity demand is a large challenge, the study also analyzes the impact of a partial recourse to natural gas as a reducing agent in combination with other measures like carbon capture and utilization/storage. The results show that such a recourse would reduce the electricity demand to 36.8 TWh. Hence, the paper illustrates relevant implications of the different scenarios, which can be used by policymakers to develop more realistic and resilient strategies for reaching carbon neutrality.  相似文献   
79.

Objective

The purpose of this study was to determine the accuracy and reliability of Frankfort horizontal plane identification using displays of multi-planar reconstructed MRI images, and propose it as a sufficiently stable and standardized reference plane for craniofacial structures.

Materials and Methods

MRI images of 43 subjects were obtained from the longitudinal population based cohort study SHIP-2 using a T1-weighted 3D sequence. Five examiners independently identified the three landmarks that form FH plane. Intra-examiner reproducibility and inter-examiner reliability, correlation coefficients (ICC), coefficient of variability and Bland-Altman plots were obtained for all landmarks coordinates to assess reproducibility. Intra-examiner reproducibility and inter-examiner reliability in terms of location and plane angulation were also assessed.

Results

Intra- and inter-examiner reliabilities for X, Y and Z coordinates of all three landmarks were excellent with ICC values ranging from 0.914 to 0.998. Differences among examiners were more in X and Z than in Y dimensions. The Bland–Altman analysis demonstrated excellent intra- as well as inter-examiner agreement between examiners in all coordinates for all landmarks. Intra-examiner reproducibility and inter-examiner reliability of the three landmarks in terms of distance showed mean differences between 1.3 to 2.9 mm, Mean differences in plane angulation were between 1.0° to 1.5° among examiners.

Conclusion

This study revealed excellent intra-examiner reproducibility and inter-examiner reliability of Frankfort Horizontal plane through 3D landmark identification in MRI. Sufficiently stable landmark-based reference plane could be used for different treatments and studies.  相似文献   
80.
The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase biotransformations. Although 1-decanol showed an about 10-fold higher toxicity to the cells than 1-octanol, the cells were able to adapt completely to 1-decanol only and could not be adapted in order to grow stably in the presence of a second phase of 1-octanol. The main explanation for this observation can be seen in the higher water and membrane solubility of 1-octanol. The hydrophobicity (log P) of a substance correlates with a certain partitioning of that compound into the membrane. Combining the log P value with the water solubility, the maximum membrane concentration of a compound can be calculated. With this simple calculation, it is possible to predict the property of an organic chemical for its potential applicability as a solvent for two-liquid-phase biotransformations with solvent-tolerant P. putida strains. Only compounds that show a maximum membrane concentration of less than 400 mM, such as 1-decanol, seem to be tolerated by these bacterial strains when applied in supersaturating concentrations to the medium. Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes. This was also demonstrated in shake cultures, where increasing amounts of a second phase of 1-decanol led to bacteria tolerating higher concentrations of the model substrate 3-nitrotoluene. Transferring this example to a 5-liter-scale bioreactor with 10% (vol/vol) 1-decanol, the amount of 3-nitrotoluene tolerated by the cells is up to 200-fold higher than in pure aqueous medium. The system demonstrates the usefulness of two-phase biotransformations utilizing solvent-tolerant bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号