首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   31篇
  452篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   10篇
  2017年   12篇
  2016年   5篇
  2015年   15篇
  2014年   15篇
  2013年   11篇
  2012年   33篇
  2011年   23篇
  2010年   14篇
  2009年   26篇
  2008年   18篇
  2007年   24篇
  2006年   24篇
  2005年   22篇
  2004年   18篇
  2003年   11篇
  2002年   20篇
  2001年   16篇
  2000年   21篇
  1999年   15篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1992年   7篇
  1991年   4篇
  1990年   8篇
  1989年   6篇
  1988年   9篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   4篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
排序方式: 共有452条查询结果,搜索用时 15 毫秒
61.
62.
A study of bacterial surface oligosaccharides were investigated among different strains of Neisseria gonorrhoeae to correlate structural features essential for binding to the MAb 2C7. This epitope is widely expressed and conserved in gonococcal isolates, characteristics essential to an effective candidate vaccine antigen. Sample lipooligosaccharides (LOS), was prepared by a modification of the hot phenol-water method from which de-O-acetylated LOS and oligosaccharide (OS) components were analyzed by ES-MS-CID-MS and ES-MSnin a triple quadrupole and an ion trap mass spectrometer, respectively. Previously documented natural heterogeneity was apparent from both LOS and OS preparations which was admixed with fragments induced by hydrazine and mild acid treatment. Natural heterogeneity was limited to phosphorylation and antenni extensions to the alpha-chain. Mild acid hydrolysis to release OS also hydrolyzed the beta(1-->6) glycosidic linkage of lipid A. OS structures were determined by collisional and resonance excitation combined with MS and multistep MSn which provided sequence information from both neutral loss, and nonreducing terminal fragments. A comparison of OS structures, with earlier knowledge of MAb binding, enzyme treatment, and partial acid hydrolysis indicates a generic overlapping domain for 2C7 binding. Reoccurring structural features include a Hepalpha(1-->3)Hepbeta(1-->5)KDO trisaccharide core branched on the nonreducing terminus (Hep-2) with an alpha(1-->2) linked GlcNAc (gamma-chain), and an alpha-linked lactose (beta-chain) residue. From the central heptose (Hep-1), a beta(1-->4) linked lactose (alpha-chain), moiety is required although extensions to this residue appear unnecessary.   相似文献   
63.
Trypanosoma brucei ornithine decarboxylase, expressed and purified from E. coli, has been crystallized by the vapor diffusion method using PEG 3350 as a precipitant. The crystals belong to the monoclinic space group P21 and have cell constants of a = 66.3 Å, b = 151.8 Å, c = 83.7 Å, and β = 101.2°. While larger crystals are twinned, smaller crystals (0.4 × 0.3 × 0.05 mm3) are single.  相似文献   
64.
Changes in the blood flow in the skin of the plantar surface of the hallux were investigated by laser Doppler flowmetry in eight healthy subjects during transcutaneous electrical spinal cord stimulation (tESCS) with the pulse parameters used to activate locomotion. Continuous tESCS in the area of C5–C6 vertebrae did not cause significant changes in the blood flow, while electrical stimulation at T 12T 1 and L 1L 2 levels resulted in an increase in skin perfusion by 22–27%. Wavelet analysis of microcirculatory fluctuations showed that tESCS induced flaxomotions in the range of sensory peptidergic fibers and enhanced the amplitude of fluctuations of microcirculation in the endothelium-dependent range. These results suggest that tESCS stimulates microcirculation in the skin mainly due to antidromic stimulation of sensory peptidergic nerve fibers, which promotes activity of microvascular endothelium, vasodilator secretion, a decrease in vascular resistance, and an increase in microcirculation.  相似文献   
65.
N-hydroxysuccinimide ester of monomethoxy polyethylene glycol hemisuccinate was synthesized. It acylated amino groups in a molecule of recombinant L-asparaginase from Erwinia carotovora. A method of L-asparaginase modification by the obtained activated polyethylene glycol derivative was developed. The best results were produced by modification of the enzyme with a 25-fold excess of reagent relative to the enzyme tetramer. The modified L-asparaginase was isolated from the reaction mixture by gel filtration on Sepharose CL-6B. The purified bioconjugate did not contain PEG unbound to the protein, demonstrated high catalytic activity, and exhibited antiproliferative action on cell cultures.  相似文献   
66.
A repetitively rated microwave oscillator whose frequency can be varied electronically from pulse to pulse in a predetermined manner is created for the first time. The microwave oscillator has a power on the order of 108 W and is based on the Cherenkov interaction of a high-current relativistic electron beam with a plasma preformed before each pulse. Electronic control over the plasma properties allows one to arbitrarily vary the microwave frequency from pulse to pulse at a pulse repetition rate of up to 50 Hz.  相似文献   
67.
JAK2 (Janus kinase 2) is essential for cytokine receptor signaling, and several lines of evidence support a causal role of an activating JAK2 mutation in myeloproliferative disorders. JAK2 activity is autoinhibited by its pseudokinase domain in the basal state, and the inhibition is released by cytokine stimulation; how engagement of the cognate receptor triggers this release is unknown. From a functional screen for gain-of-function JAK2 mutations, we discovered 13 missense mutations, nine in the pseudokinase domain and four in the Src homology 2 (SH2)-pseudokinase domain linker. These mutations identified determinants for autoinhibition and inducible activation in JAK2. Two of the mutants, K539I and N622I, resulted in erythrocytosis in mice. Scanning mutagenesis of the SH2-pseudokinase domain linker indicated that its N-terminal part was essential for interaction of JAK2 with the Epo receptor, whereas certain mutations in the C-terminal region conferred constitutive activation. We further showed that substitutions for Glu543-Asp544 in this linker or Leu611, Arg683, or Phe694 in the hinge proximal region of the pseudokinase domain resulted in activated JAK2 mutants that could not be further stimulated by Epo. These results suggest that the SH2-pseudokinase domain linker acts as a switch that relays cytokine engagement to JAK2 activation by flexing the pseudokinase domain hinge.The Janus family of tyrosine kinases (JAKs)2 are key regulators of cytokine receptor signaling in hematopoiesis and immune responses (1). Of the four mammalian JAK kinases, JAK2 transmits signals for a variety of cytokine receptors, including the erythropoietin receptor (EpoR) that is essential for red blood cell production (2). Upon Epo stimulation, JAK2 activates downstream signaling, such as STAT5, Ras/mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/AKT pathways (2). Mice deficient in Epo, EpoR, or JAK2 die embryonically due to the absence of definitive erythropoiesis (35).In addition to regulation by phosphatases and suppressors of cytokine signaling (6, 7), JAK2 kinase activity is critically controlled by an autoinhibitory mechanism. Like other JAK members, JAK2 contains an N-terminal segment followed by a pseudokinase domain and a C-terminal tyrosine kinase domain. The N-terminal segment, consisting of a FERM (protein 4.1, ezrin, moezin, radixin homologous) domain and an atypical SH2 domain (1), mediates association with the membrane-proximal region of the cytokine receptors (8). Binding of JAK2 through its N-terminal segment to the EpoR is essential for EpoR surface expression (9). The pseudokinase domain is predicted to adopt a kinase fold but lacks residues essential for catalysis (10). Deletion of the pseudokinase domain leads to a marked increase in JAK2 kinase activity and loss of response to cytokine stimulation (1113). Therefore, this domain is essential for JAK2 autoinhibition and is essential for JAK2 activation upon cytokine stimulation. Consistent with this notion, a point mutation in the JAK2 pseudokinase domain was identified in the majority of myeloproliferative disorder patients, including 90% of polycythemia vera (PV) patients (1418). This mutation, V617F, in the presence of a dimerized receptor scaffold, such as the EpoR, resulted in the constitutive activation of JAK2 and downstream signaling effectors (19, 20) and caused erythrocytosis in a murine bone marrow transplant model (14, 2123). Recently, mutations immediately adjacent to the JAK2 pseudokinase domain in the SH2-pseudokinase domain linker were identified in PV patients and shown to cause constitutive activation of JAK2 and a PV-like phenotype in mice (2426). The molecular mechanisms underlying the control of JAK2 activity (i.e. the swift augmentation of its activity upon receptor activation) are poorly understood. The residues involved in the autoinhibition in JAK2 are unknown.In this work, we sought to characterize the regulatory mechanisms controlling JAK2 kinase activity. Using a functional screen for activating JAK2 mutations that signal constitutively, we discovered 13 mutations in the pseudokinase domain and in the SH2-pseudokinase domain linker. These mutations identified specific residues that are important for the inhibition of basal JAK2 kinase activity and for cytokine-induced JAK2 activation. In addition, we showed that the SH2-pseudokinase domain linker is essential for interaction with the EpoR, autoinhibitory regulation, and Epo-inducible JAK2 activation and may act as a switch in relaying cytokine receptor engagement to JAK2 activation by flexing the pseudokinase domain hinge.  相似文献   
68.
Two new polypeptide components which exhibited an analgesic effect in experiments on mice were isolated from the Heteractis crispa sea tropical anemone by the combination of chromatographic methods. The APHC2 and APHC3 new polypeptides consisted of 56 amino acid residues and contained six cysteine residues. Their complete amino acid sequence was determined by the methods of Edman sequencing, mass spectrometry, and peptide mapping. An analysis of the primary structure of the new peptides allowed for their attribution to a large group of trypsin inhibitors of the Kunitz type. An interesting biological function of the new polypeptides was their analgesic effect on mammals, which is possibly realized via the modulation of the activity of the TRPV1 receptor and was not associated with the residual inhibiting activity towards trypsin and chymotrypsin. The analgesic activity of the APHC3 polypeptide was measured on the hot plate model of acute pain and was significantly higher than that of APHC2. Methods of preparation of the recombinant analogues were created for both polypeptides.  相似文献   
69.
Angiopoietin-like protein 4 (ANGPTL4) is a secreted protein that modulates the disposition of circulating triglycerides (TG) by inhibiting lipoprotein lipase (LPL). Here we examine the steps involved in the synthesis and post-translational processing of ANGPTL4, and the effects of a naturally occurring sequence variant (E40K) that is associated with lower plasma TG levels in humans. Expression of the wild-type and mutant proteins in HEK-293A cells indicated that ANGPTL4 formed dimers and tetramers in cells prior to secretion and cleavage of the protein. After cleavage at a canonical proprotein convertase cleavage site (161RRKR164), the oligomeric structure of the N-terminal domain was retained whereas the C-terminal fibrinogen-like domain dissociated into monomers. Inhibition of cleavage did not interfere with oligomerization of ANGPTL4 or with its ability to inhibit LPL, whereas mutations that prevented oligomerization severely compromised the capacity of the protein to inhibit LPL. ANGPTL4 containing the E40K substitution was synthesized and processed normally, but no monomers or oligomers of the N-terminal fragments accumulated in the medium; medium from these cells failed to inhibit LPL activity. Parallel experiments performed in mice recapitulated these results. Our findings indicate that oligomerization, but not cleavage, of ANGPTL4 is required for LPL inhibition, and that the E40K substitution destabilizes the protein after secretion, preventing the extracellular accumulation of oligomers and abolishing the ability of the protein to inhibit LPL activity.Angiopoietin-like protein 4 (ANGPTL4)4 is a 50-kDa protein that is synthesized and secreted from several metabolically active tissues and has been implicated in the trafficking of circulating TG (1, 2). Triglycerides, either acquired from the diet or synthesized endogenously, circulate in blood as constituents of chylomicrons and very low density lipoproteins (VLDL). As these lipoproteins circulate in tissues they encounter lipoprotein lipase (LPL) at the vascular endothelial surfaces. LPL hydrolyzes the TG, producing free fatty acids that are taken up by the surrounding tissues. ANGPTL4 inhibits the activity of LPL, thereby limiting the uptake of TG-derived fatty acids by the underlying cells (3, 4). Overexpression of ANGPTL4 in mice causes severe hypertriglyceridemia, whereas mice lacking ANGPTL4 have increased LPL activity and low plasma levels of TG (5, 6). In mice, ANGPTL4 is predominantly expressed in adipose tissue and is strongly induced by fasting (2). Accordingly it has been proposed that ANGPTL4 inhibits LPL activity in adipose tissue to reroute fatty acids away from fat to muscle and other tissues when food intake is low (3, 4).ANGPTL4 belongs to a family of seven structurally similar secreted proteins (ANGPTL1-ANGPTL7) that contain a signal sequence followed by an α-helical region predicted to form a coiled-coil, and a globular fibrinogen-like domain at the C terminus (1). Gel filtration studies of recombinant ANGPTL4 indicate that the protein assembles into oligomers that are stabilized by disulfide bonds (7). Substitution of two highly conserved cysteine residues at positions 76 and 80 in the α-helical domain prevents oligomerization of ANGPTL4 and impairs the ability of the recombinant protein to increase plasma TG levels when overexpressed in the livers of rats (7).Upon secretion into the circulation, ANGPTL4 is cleaved into an N-terminal domain and a C-terminal fibrinogen-like domain (8). The N-terminal peptide circulates as an oligomer, and the fibrinogen-like domain circulates as a monomer (8). The N-terminal helical region of ANGPTL4 is necessary and sufficient for inhibition of LPL (9). A peptide corresponding to amino acids 1-187 of the protein binds LPL with high affinity and converts the enzyme from catalytically active dimers to inactive monomers, thereby inhibiting LPL activity (10). After disrupting the LPL dimer, ANGPTL4 is released. The LPL monomers remain folded and stable but fail to re-form active dimers. These data suggest that the N-terminal domain of ANGPTL4 interacts directly but transiently with LPL, triggering a stable conformational switch in LPL that irreversibly inactivates the enzyme.Recently, we used a population-based resequencing strategy to examine the metabolic role of ANGPTL4 in humans (11). Resequencing the coding region of ANGPTL4 in a large (n = 3,501), multiethnic sample revealed multiple rare sequence variations that alter an amino acid in the protein and are associated with low plasma TG levels. In addition, we identified a more common variant (E40K), that was present in ∼3% of European-Americans and was associated with significantly lower plasma levels of TG and low density lipoprotein-cholesterol (LDL-C), and higher levels of high density lipoprotein (HDL)-C in two large epidemiological studies (11). These association studies confirmed that ANGPTL4 is involved in TG metabolism in humans, and also revealed additional roles in humans in the metabolism of HDL and LDL, which were not apparent from studies in genetically modified mice.Here we examined the synthesis, secretion, and processing of ANGPTL4 and determine the mechanism by which substitution of a basic (lysine) for an acidic (glutamate) residue at residue 40 affects the function of the protein.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号