首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   3篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1997年   3篇
  1996年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
21.
PCSK9, a target for the treatment of dyslipidemia, enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes, up-regulating LDL-cholesterol levels. Whereas the targeting and degradation of the PCSK9-LDLR complex are under scrutiny, the roles of the N- and C-terminal domains of PCSK9 are unknown. Although autocatalytic zymogen processing of PCSK9 occurs at Gln(152)↓, here we show that human PCSK9 can be further cleaved in its N-terminal prosegment at Arg(46)↓ by an endogenous enzyme of insect High Five cells and by a cellular mammalian protease, yielding an ~4-fold enhanced activity. Removal of the prosegment acidic stretch resulted in ~3-fold higher binding to LDLR in vitro, in ≥4-fold increased activity on cellular LDLR, and faster cellular internalization in endosome/lysosome-like compartments. Finally, swapping the acidic stretch of PCSK9 with a similar one found in the glycosylphosphatidylinositol-anchored heparin-binding protein 1 does not impair PCSK9 autoprocessing, secretion, or activity and confirmed that the acidic stretch acts as an inhibitor of PCSK9 function. We also show that upon short exposure to pH values 6.5 to 5.5, an ~2.5-fold increase in PCSK9 activity on total and cell surface LDLR occurs, and PCSK9 undergoes a second cleavage at Arg(248), generating a two-chain PCSK9-ΔN(248). At pH values below 5.5, PCSK9 dissociates from its prosegment and loses its activity. This pH-dependent activation of PCSK9 represents a novel pathway to further activate PCSK9 in acidic endosomes. These data enhance our understanding of the functional role of the acidic prosegment and on the effect of pH in the regulation of PCSK9 activity.  相似文献   
22.
The Bidder's organ (BO) of male true toads of Bufonidae family is located in the anterior pole of the testis and it has been compared to a rudimentary ovary because of the presence of previtellogenic follicles. In some species, BO remains in both sexes, while in others only adult males preserve the structure. Several studies suggest that the development of BO is inhibited by the differentiation of the corresponding gonad. The purpose of this study is to describe morphological and histological variability of the BO of Rhinella arenarum and also analyze its steroidogenic capacity. Observations indicate that although most bidderian follicles are in pre vitellogenesis, there are others in early or late vitellogenesis. Moreover, we found that BOs weight was significantly lower in males during the pre-reproductive period and that there is no significant correlation between the weights of BO and the adjacent testis. We also analyzed the presence of steroidogenic enzymes using immunohistochemistry. Results indicate that all the follicles were immunoreactive with the antibody against aromatase, while only few of them were positive for the cytochrome P450 side-chain cleavage. Furthermore, activities of 3β-hydroxysteroid dehydrogenase/isomerase, cytochrome P450 17-hydroxylase, C17,20-lyase and aromatase were detected by the transformation of radioactive substrates into products. Taken together, these results confirm the steroidogenic capacity of the BO in adult males of R. arenarum.  相似文献   
23.
Protein kinase C (PKC) is involved in many neuroadaptive responses to ethanol in the nervous system. PKC activation results in translocation of the enzyme from one intracellular site to another. Compartmentalization of PKC isozymes is regulated by targeting proteins such as receptors for activated C kinase (RACKs). It is possible, therefore, that ethanol-induced changes in the function and compartmentalization of PKC isozymes could be due to changes in PKC targeting proteins. Here we study the response of the targeting protein RACK1 and its corresponding kinase betaIIPKC to ethanol, and propose a novel mechanism to explain how ethanol modulates signaling cascades. In cultured cells, ethanol induces movement of RACK1 to the nucleus without affecting the compartmentalization of betaIIPKC. Ethanol also inhibits betaIIPKC translocation in response to activation. These results suggest that ethanol inhibition of betaIIPKC translocation is due to miscompartmentalization of the targeting protein RACK1. Similar events occurred in mouse brain. In vivo exposure to ethanol caused RACK1 to localize to nuclei in specific brain regions, but did not affect the compartmentalization of betaIIPKC. Thus, some of the cellular and neuroadaptive responses to ethanol may be related to ethanol-induced movement of RACK1 to the nucleus, thereby preventing the translocation and corresponding function of betaIIPKC.  相似文献   
24.
The centrosome usually replicates in a semiconservative fashion, i.e., new centrioles form in association with preexisting "maternal" centrioles. De novo formation of centrioles has been reported for a few highly specialized cell types but it has not been seen in vertebrate somatic cells. We find that when centrosomes are completely destroyed by laser microsurgery in CHO cells arrested in S phase by hydroxyurea, new centrosomes form by de novo assembly. Formation of new centrosomes occurs in two steps: approximately 5-8 h after ablation, clouds of pericentriolar material (PCM) containing gamma-tubulin and pericentrin appear in the cell. By 24 h, centrioles have formed inside of already well-developed PCM clouds. This de novo pathway leads to the formation of a random number of centrioles (2-14 per cell). Although clouds of PCM consistently form even when microtubules are completely disassembled by nocodazole, the centrioles are not assembled under these conditions.  相似文献   
25.
The proprotein convertase PCSK9, a target for the treatment of hypercholesterolemia, is a negative regulator of the LDL receptor (LDLR) leading to its degradation in endosomes/lysosomes and up-regulation of plasma LDL-cholesterol levels. The proprotein convertases, a family of nine secretory serine proteases, are first synthesized as inactive zymogens. Except for PCSK9, all other convertases are activated following the autocatalytic excision of their inhibitory N-terminal prosegment. PCSK9 is unique since the mature enzyme exhibits a cleaved prosegment complexed with the catalytic subunit and has no protease activity towards other substrates. Similar to other convertases, we hypothesized that the in trans presence of the PCSK9 prosegment would interfere with PCSK9''s activity on the LDLR. Since the prosegment cannot be secreted alone, we engineered a chimeric protein using the Fc-region of human IgG1 fused to the PCSK9 prosegment. The expression of such Fcpro-fusion protein in HEK293 and HepG2 cells resulted in a secreted protein that binds PCSK9 and markedly inhibits its activity on the LDLR. This was observed by either intracellular co-expression of PCSK9 and Fcpro or by an extracellular in vitro co-incubation of Fcpro with PCSK9. Structure-function studies revealed that the inhibitory function of Fcpro does not require the acidic N-terminal stretch (residues 31–58) nor the C-terminal Gln152 of the prosegment. Fcpro likely interacts with the prosegment and/or catalytic subunit of the prosegment≡PCSK9 complex thereby allosterically modulating its function. Our data suggest a novel strategic approach for the design and isolation of PCSK9 inhibitors.  相似文献   
26.
The obligatory cost of living for endotherms is measured by basal metabolic rate (BMR), a variable that is known to change after thermal acclimation. However, the relative timing between variation in ambient temperature and BMR is not well understood. In this study, we addressed this problem in the sparrow Zonotrichia capensis, studying whether previous thermal history affects the response of BMR to a new acclimation temperature. We found that after 4 weeks of acclimation either to 30 or 15 °C birds exhibited significant differences in BMR from pre-acclimation levels. Nevertheless, after a re-acclimation to the opposite treatment for six additional weeks, in the group previously acclimated to warm conditions the change in BMR was significantly greater than in the group previously acclimated to cold. We also found differences in the mass of the small intestine between groups but constancy in the mass of liver, kidney and heart masses at the end of the experiments. Our results indicate that the thermal history affects metabolic adjustments and highlights the importance of considering this when evaluating the plasticity of metabolic traits in small birds.  相似文献   
27.
In this study, natural fungal diversity in wood-decaying species was explored for biomass deconstruction. In 2007 and 2008, fungal isolates were collected in temperate forests mainly from metropolitan France and in tropical forests mainly from French Guiana. We recovered and identified 74 monomorph cultures using morphological and molecular identification tools. Following production of fungal secretomes under inductive conditions, we evaluated the capacity of these fungal strains to potentiate a commercial Trichoderma reesei cellulase cocktail for the release of soluble sugars from biomass. The secretome of 19 isolates led to an improvement in biomass conversion of at least 23%. Of the isolates, the Trametes gibbosa BRFM 952 (Banque de Ressources Fongiques de Marseille) secretome performed best, with 60% improved conversion, a feature that was not universal to the Trametes and related genera. Enzymatic characterization of the T. gibbosa BRFM 952 secretome revealed an unexpected high activity on crystalline cellulose, higher than that of the T. reesei cellulase cocktail. This report highlights the interest in a systematic high-throughput assessment of collected fungal biodiversity to improve the enzymatic conversion of lignocellulosic biomass. It enabled the unbiased identification of new fungal strains issued from biodiversity with high biotechnological potential.  相似文献   
28.
In the context of a medium-scaled structural genomics program aiming at solving the structures of as many as possible bacterial unknown open reading frame products from Escherichia coli (Y prefix), we have solved the structure of YdcW at 2.1A resolution, using molecular replacement. According to its sequence identity, YdcW has been classified into the betaine aldehyde dehydrogenases family (EC 1.2.1.8), catalysing the oxidation of betaine aldehyde into glycine betaine. The structure of YdcW resembles that of other aldehyde dehydrogenases: it is tetrameric and binds a NADH molecule in each monomer. The NADH molecules, bound in the active site by soaking, are revealed to be in the "hydrolysis position". Activities experiments demonstrate that YdcW is more active on medium-chains aldehyde than on betaine aldehyde. However, soaking of betaine into YdcW crystals revealed its presence in one of the subunits, in two positions, a putative resting position and a hydride transfer ready position. Analysis of kinetics data and of the active site shape suggest an optimum binding of n-alkyl aldehydes up to seven to eight carbon atoms, possibly followed by a bulky cyclic or aromatic group.  相似文献   
29.
Two single-step purification methods were used to isolate the recombinant protein, rBm86, produced in Pichia pastoris. Salting-out results in a compromise between final purity and recovery of rBm86. At 15, 25 and 35% of ammonium sulphate saturation (pH 7), rBm86 concentration in the supernatant phase was proportional to the initial amount of protein. Acid precipitation of contaminants resulted in 98% purity and 98% recovery of rBm86. High aggregation of rBm86, forming particles of 28 nm, changed the isoelectric point of monomers (5.5), considering only the aminoacid sequence, to 4.5 for particles.  相似文献   
30.
Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylcer‐amide macrophages, the accumulation of glucosylceramide in lysosomes and the secretion of inflammatory cytokines. However, the connection between this lysosomal storage and inflammation is not clear. Studying macrophages derived from peripheral monocytes from patients with type 1 Gaucher disease with genotype N370S/N370S, we confirmed an increased secretion of interleukins IL‐1β and IL‐6. In addition, we found that activation of the inflammasome, a multiprotein complex that activates caspase‐1, led to the maturation of IL‐1β in Gaucher macrophages. We show that inflammasome activation in these cells is the result of impaired autophagy. Treatment with the small‐molecule glucocerebrosidase chaperone NCGC758 reversed these defects, inducing autophagy and reducing IL‐1β secretion, confirming the role of the deficiency of lysosomal glucocerebrosidase in these processes. We found that in Gaucher macrophages elevated levels of the autophagic adaptor p62 prevented the delivery of inflammasomes to autophagosomes. This increase in p62 led to activation of p65‐NF‐kB in the nucleus, promoting the expression of inflammatory cytokines and the secretion of IL‐1β. This newly elucidated mechanism ties lysosomal dysfunction to inflammasome activation, and may contribute to the massive organomegaly, bone involvement and increased susceptibility to certain malignancies seen in Gaucher disease. Moreover, this link between lysosomal storage, impaired autophagy, and inflammation may have implications relevant to both Parkinson disease and the aging process. Defects in these basic cellular processes may also provide new therapeutic targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号