首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   15篇
  国内免费   1篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   2篇
  2015年   7篇
  2014年   6篇
  2013年   8篇
  2012年   10篇
  2011年   8篇
  2010年   8篇
  2009年   10篇
  2008年   7篇
  2007年   6篇
  2006年   5篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1968年   2篇
  1965年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
41.

Background  

SH3 domains are small protein modules of 60–85 amino acids that bind to short proline-rich sequences with moderate-to-low affinity and specificity. Interactions with SH3 domains play a crucial role in regulation of many cellular processes (some are related to cancer and AIDS) and have thus been interesting targets in drug design. The decapeptide APSYSPPPPP (p41) binds with relatively high affinity to the SH3 domain of the Abl tyrosine kinase (Abl-SH3), while it has a 100 times lower affinity for the α-spectrin SH3 domain (Spc-SH3).  相似文献   
42.
43.
Varicocele is a prevalent pathology among infertile men. The mechanisms linking this condition to infertility, however, are poorly understood. Our previous work showed a relationship between sperm functional quality and the ability of spermatozoa to respond to capacitating conditions with increased membrane fluidity and protein tyrosine phosphorylation. Given the reported association between varicocele, oxidative stress, and sperm dysfunction, we hypothesized that spermatozoa from infertile patients with varicocele might have a combined defect at the level of membrane fluidity and protein tyrosine phosphorylation. Semen samples from infertile patients with and without grade II/III left varicocele were evaluated for motion parameters (computer-assisted semen analysis [CASA]), hyperactivation (CASA), incidence and intensity of protein tyrosine phosphorylation (phosphotyrosine immunofluorescence and western blotting), and membrane fluidity (Laurdan fluorometry), before and after a capacitating incubation (6 hr at 37 degrees C in Ham's F10/BSA, 5% CO(2)). Spermatozoa from varicocele samples presented a decreased response to the capacitating challenge, showing significantly lower motility, hyperactivation, incidence and intensity of tyrosine phosphorylation, and membrane fluidity. The findings reported in this article indicate that the sperm dysfunction associated to infertile varicocele coexists with decreased sperm plasma membrane fluidity and tyrosine phosphorylation. These deficiencies represent potential new pathophysiological mechanisms underlying varicocele-related infertility.  相似文献   
44.
Hepatic glucokinase (GK) moves between the nucleus and cytoplasm in response to metabolic alterations. Here, using heterologous cell systems, we have found that at least two different mechanisms are involved in the intracellular movement of GK. In the absence of the GK regulatory protein (GKRP) GK resides only in the cytoplasm. However, in the presence of GKRP, GK moves to the nucleus and resides there in association with this protein until changes in the metabolic milieu prompt its release. GK does not contain a nuclear localization signal sequence and does not enter the nucleus in a GKRP-independent manner because cells treated with leptomycin B, a specific inhibitor of leucine-rich NES-dependent nuclear export, do not accumulate GK in the nucleus. Instead, entry of GK into the nucleus appears to occur via a piggy-back mechanism that involves binding to GKRP. Nuclear export of GK, which occurs after its release from GKRP, is due to a leucine-rich nuclear export signal within the protein ((300)ELVRLVLLKLV(310)). Thus, GKRP appears to function as both a nuclear chaperone and metabolic sensor and is a critical component of a hepatic GK translocation cycle for regulating the activity of this enzyme in response to metabolic alterations.  相似文献   
45.
Melanocortins mediate the effects of leptin in the central nervous system (CNS) and regulate energy balance through the MCR3 and MCR4 receptors. Here, we examined the specific role of MCR4 in modulating fat consumption. In a three-choice feeding model, the non-selective melanocortin agonist MT-II decreased fat consumption preferentially and the effect was absent in mice deficient in MCR4. Further, an agonist selective for the MCR4 subtype [Danho W, Swistok J, Cheung A, Chu XJ, Wang Y, Chen L, et al. Highly selective cyclic peptides for the melanocortin-4 receptor: design, synthesis, bioactive conformation and pharmacological evaluation as anti-obesity agents. In: Lebl M, Houghten R, editors. Peptides: the wave of the future. Am. Peptide Soc., 2001. p. 701-703.] also decreased dietary fat intake in a MCR4-dependent manner. Thus, MCR4 activation is both necessary and sufficient for the control of dietary fat intake by melanocortin signals and may provide a pharmacological means to control the consumption of fatty foods.  相似文献   
46.
The liquorice tribe Glycyrrhizeae is a leguminous herbaceous group of plants comprised of the genera Glycyrrhiza and Glycyrrhizopsis. Some Glycyrrhiza taxa contain glycyrrhizin, a pharmacologically significant sweet substance that also has applications in crafting industrial materials. Here, we utilized an expanded taxon sampling of Glycyrrhizeae to reconstruct the phylogenetic relationships in the tribe based on genome skimming data, including whole chloroplast genomes, nuclear ribosomal DNA, and low-copy nuclear DNA. We also launched machine learning analysis (MLA) for one species pair with controversial taxonomic boundary. The integrated results indicated Glycyrrhizopsis should be split from Glycyrrhiza, while the former genus Meristotropis should be treated as part of Glycyrrhiza. Glycyrrhizopsis includes two species, Glycyrrhizopsis asymmetrica and Glycyrrhizopsis flavescens, and we recognize 13 species in Glycyrrhiza: Glycyrrhiza acanthocarpa, Glycyrrhiza astragalina, Glycyrrhiza bucharica, Glycyrrhiza echinata, Glycyrrhiza foetida, Glycyrrhiza glabra, Glycyrrhiza gontscharovii, Glycyrrhiza lepidota, Glycyrrhiza macedonica, Glycyrrhiza pallidiflora, Glycyrrhiza squamulosa, Glycyrrhiza triphylla, and Glycyrrhiza yunnanensis. We propose a broader G. glabra that includes former Glycyrrhiza aspera, G. glabra s.s., Glycyrrhiza inflata, and Glycyrrhiza uralensis, and represents the glycyrrhizin-contained medicinal group. Our ancestral state inferences show the ancestor of Glycyrrhiza lacked glycyrrhizin, and the presence of glycyrrhizin evolved twice within Glycyrrhiza during the last one million years. Our integrative phylogenomics-MLA study not only provides new insights into long-standing taxonomic controversies of Glycyrrhizeae, but also represents a useful approach for future taxonomic studies on other plant taxa.  相似文献   
47.
In vitro aged sheep erythrocytes and sheep erythrocyte ghosts spontaneously release vesicles that consist of long protrusions affixed to flattened headlike structures. The intramembranous particles seen on the protoplasmic face of freeze fracture electron micrographs of vesicle protrusions are arranged in paired particle rows. On the equivalent fracture face of headlike structures, the particle density is low; if particles are present, they are clustered along the rim of the flattened headlike structure and at the junction with the protrusion. The released vesicles are depleted of the intramembranous particles seen on the exoplasmic face of ghost but retain almost exclusively particles of the protoplasmic face. Correspondingly, the exoplasmic face of ghosts that have released vesicles reveals a 28 percent higher density of intramembranous particles than that of fresh ghosts. Purified vesicles are depleted of spectrin but retain integral membrane proteins, with one of an apparent mol wt of 160,000 accounting for nearly 50 percent of the total protein (Lutz, H.U.,R. Barber, and R.F. McGuire. 1976. J. Biol. Chem. 251:3500-3510). When vesicles are modified with the cleavable cross-linking reagent [(35)S]dithiobis (succinimidyl propionate)at 0 degrees C, the 160,000 mol wt protein is rapidly converted to disulfide-linked dimers and higher oligomers. Exposure of intact ghosts to the reagent in the same way fails to yield equivalent polymers. A comparison of the morphological and biochemical aspects of ghosts and vesicles suggest that a marked rearrangement of membrane proteins accompanies the supramolecular redistribution of intramembranous particles during spontaneous vesiculation. The results also suggest that the paired particles of the protoplasmic face of vesicle protrusions are arranged in paired helices and contain the 160,000 mol wt protein as dimers.  相似文献   
48.
In full-grown oocytes of Xenopus laevis more than 80 % of the total DNA polymerase activity is found in the germinal vesicle (nucleus) and only about 8% in the cytoplasm. The intracellular distribution of the multiple DNA polymerase forms has been studied in oocytes and in embryonic cells. The oocyte nucleus contains a major DNA polymerase species, sedimenting at about 7S, and a minor species sedimenting at about 5S. These enzymes are comparable, respectively, with the DNA polymerases α and β described in other biological systems. In the oocyte cytoplasm, besides a small amount of the 7S form, an 8–9S DNA polymerase activity is also detectable. In the nuclei of embryonic cells, in addition to the DNA polymerase forms present in the oocyte nucleus, a new major form which seems specific for the eggs and embryos is detectable by DEAE chromatography.  相似文献   
49.
1. A human glioma cell line, NG97, was established by Grippo et al. in 2001 from tissue obtained from a grade III astrocytoma (WHO, 2000). In this first study, the cell line grew as two morphologically distinct subpopulations: dendritic/spindle cells and small round cells. The injection of NG97 cells into nude mice induced an aggressive tumor characterized by: severe cytological atypia, vascular proliferation and pseudopalisading necrosis (glioblastoma multiforme features). 2. The purpose of the present study was to characterize the immunophenotype and ultrastructural aspects of this cell line, using the parental tumor, cultured cells and the xenotransplant, in order to assess its glial nature and possible divergent differentiation. 3. NG97 cells and xenotransplant expressed the main neuroglial markers (GFAP, S-100 protein, NSE and Leu-7) and showed no aberrant expression of other histogenetic markers. GFAP was similarly expressed in the parental tumor and in the cells in culture, but decreased in the xenotransplant. NSE expression was reduced in NG97 cells, but substantially recovered in the xenotransplant. This variability in expression of GFAP and NSE was interpreted as either a phenomenon of dedifferentiation or to microenvironmental selection of specific subclones. S-100 was equally expressed in the three contexts. The xenotransplant's ultrastructural features were those of a highly undifferentiated tumor. No significant immunophenotypic or ultrastructural differences between the two morphologically distinct populations were found. 4. Thus, our data demonstrate that NG97 cells constitute a pure glial-committed cell line, which may prove useful as a malignant glioma model in studies addressing pathophysiological, diagnostic and therapeutic issues.  相似文献   
50.
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号