全文获取类型
收费全文 | 1087篇 |
免费 | 112篇 |
国内免费 | 1篇 |
专业分类
1200篇 |
出版年
2023年 | 8篇 |
2022年 | 12篇 |
2021年 | 24篇 |
2020年 | 20篇 |
2019年 | 28篇 |
2018年 | 33篇 |
2017年 | 30篇 |
2016年 | 42篇 |
2015年 | 73篇 |
2014年 | 67篇 |
2013年 | 60篇 |
2012年 | 73篇 |
2011年 | 90篇 |
2010年 | 39篇 |
2009年 | 40篇 |
2008年 | 62篇 |
2007年 | 46篇 |
2006年 | 63篇 |
2005年 | 53篇 |
2004年 | 47篇 |
2003年 | 38篇 |
2002年 | 32篇 |
2001年 | 7篇 |
2000年 | 8篇 |
1999年 | 13篇 |
1998年 | 8篇 |
1997年 | 8篇 |
1995年 | 6篇 |
1994年 | 9篇 |
1992年 | 8篇 |
1991年 | 8篇 |
1990年 | 5篇 |
1989年 | 9篇 |
1988年 | 6篇 |
1987年 | 6篇 |
1986年 | 4篇 |
1985年 | 6篇 |
1984年 | 4篇 |
1983年 | 7篇 |
1982年 | 11篇 |
1981年 | 5篇 |
1980年 | 8篇 |
1979年 | 7篇 |
1978年 | 7篇 |
1976年 | 5篇 |
1975年 | 7篇 |
1974年 | 4篇 |
1973年 | 7篇 |
1972年 | 5篇 |
1969年 | 4篇 |
排序方式: 共有1200条查询结果,搜索用时 15 毫秒
31.
Maintenance of genomic stability is of crucial importance for all living organisms. It is no surprise that during evolution,
a series of highly selective and efficient systems to detect DNA damage and control its repair have evolved. To this end,
signal transduction pathways are involved in pausing the cell division cycle to provide time for repair, and ultimately releasing
the cell cycle from arrest. Genetic components of the damage and replication checkpoints have been identified and a working
model is beginning to emerge. This area of biological inquiry has received a great deal of attention in the past decade with
the realization that the underlying regulatory mechanisms controlling the cell cycle are conserved throughout eukaryotic evolution.
Many of the key players in this response have structural and functional counterparts in species as diverse as yeast and human.
In recent years attention has also been paid to the plant kingdom suggesting that checkpoint controls have been highly conserved
during evolution. The unicellular green alga Chlamydomonas reinhardtii is a suitable model organism for the study of basic cellular processes including cell cycle regulation and DNA repair. To
investigate how algal cells accomplish these tasks, we have isolated mutants in the recognition and repair of DNA damage or
in the response to DNA damage.
Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia. 相似文献
32.
Eric Dumonteil Henry Pronovost Eli F. Bierman Anna Sanford Alicia Majeau Ryan Moore Claudia Herrera 《Molecular ecology》2020,29(19):3747-3761
Integrating how biodiversity and infectious disease dynamics are linked at multiple levels and scales is highly challenging. Chagas disease is a vector‐borne disease, with specificities of the triatomine vectors and Trypanosoma cruzi parasite life histories resulting in a complex multihost and multistrain life cycle. Here, we tested the hypothesis that T. cruzi transmission cycles are shaped by triatomine host communities and gut microbiota composition by comparing the integrated interactions of Triatoma sanguisuga in southern Louisiana with feeding hosts, T. cruzi parasite and bacterial microbiota in two habitats. Bugs were collected from resident's houses and animal shelters and analysed for genetic structure, blood feeding sources, T. cruzi parasites, and bacterial diversity by PCR amplification of specific DNA markers followed by next‐generation sequencing, in an integrative metabarcoding approach. T. sanguisuga feeding host communities appeared opportunistic and defined by host abundance in each habitat, yielding distinct parasite transmission networks among hosts. The circulation of a large diversity of T. cruzi DTUs was also detected, with TcII and TcV detected for the first time in triatomines in the US. The bacterial microbiota was highly diverse and varied significantly according to the DTU infecting the bugs, indicating specific interactions among them in the gut. Expanding such studies to multiple habitats and additional triatomine species would be key to further refine our understanding of the complex life cycles of multihost, multistrain parasites such as T. cruzi, and may lead to improved disease control strategies. 相似文献
33.
The Eustigmatophyceae is a class of yellow-green algae allied with the Chrysophyceae and other chlorophyll c possessing stramenopile (heterokont) algae. Some members of the class, especially the marine species of the genus Nannochloropsis, are under intense investigation for their potential for production of biofuels and beneficial fatty acids. The class has generally been thought to comprise a small number of genera and species, and these organisms were considered rare or infrequently encountered. In this study, we examined the phylogeny and diversity of this class by analysis of nuclear 18S rDNA sequence data. Our analysis included sequences from all the named members of the Eustigmatophyceae held in culture collections as well as a number of strains identified in culture collections as Xanthophyceae, new strains with features characteristic of the Eustigmatophyceae, and published data for uncultured DNA clones. The results of these analyses show that the Eustigmatophyceae is far more diverse than generally recognized. Two major lineages are supported in the class, the previously recognized order Eustigmatales and the new clade, Goniochloridales. Additional new lineages were also resolved within each of these major lineages; however, the results of our analyses were considered insufficient for naming these subordinate clades. Several of these lineages comprised only unnamed strains or uncultured DNA clones. Overall, our results indicate that the Eustigmatophyceae is a highly diverse class, with many new species, genera, and families awaiting taxonomic treatment. 相似文献
34.
Raquel Amaral Karen P. Fawley Yvonne Němcová Tereza Ševčíková Alena Lukešová Marvin W. Fawley Lília M. A. Santos Marek Eliáš 《Journal of phycology》2020,56(3):630-648
The class Eustigmatophyceae includes mostly coccoid, freshwater algae, although some genera are common in terrestrial habitats and two are primarily marine. The formal classification of the class, developed decades ago, does not fit the diversity and phylogeny of the group as presently known and is in urgent need of revision. This study concerns a clade informally known as the Pseudellipsoidion group of the order Eustigmatales, which was initially known to comprise seven strains with oval to ellipsoidal cells, some bearing a stipe. We examined those strains as well as 10 new ones and obtained 18S rDNA and rbcL gene sequences. The results from phylogenetic analyses of the sequence data were integrated with morphological data of vegetative and motile cells. Monophyly of the Pseudellipsoidion group is supported in both 18S rDNA and rbcL trees. The group is formalized as the new family Neomonodaceae comprising, in addition to Pseudellipsoidion, three newly erected genera. By establishing Neomonodus gen. nov. (with type species Neomonodus ovalis comb. nov.), we finally resolve the intricate taxonomic history of a species originally described as Monodus ovalis and later moved to the genera Characiopsis and Pseudocharaciopsis. Characiopsiella gen. nov. (with the type species Characiopsiella minima comb. nov.) and Munda gen. nov. (with the type species Munda aquilonaris) are established to accommodate additional representatives of the polyphyletic genus Characiopsis. A morphological feature common to all examined Neomonodaceae is the absence of a pyrenoid in the chloroplasts, which discriminates them from other morphologically similar yet unrelated eustigmatophytes (including other Characiopsis-like species). 相似文献
35.
We set out to investigate if E. coli genotype plays a significant role in host strain selection for optimal processing of plasmid DNA based on both quality and quantity of supercoiling. Firstly 17 E. coli commercial and non-commercial strains were selected and their available genetic backgrounds were researched in the open literature. Growth characteristics of all the strains were considered and made impartial by using a common medium and growth condition platform. By keeping the growth conditions constant for each strain/plasmid combination, we are only looking at one variable which is the host strain. The second step was to attempt to correlate the findings with common genotype characteristics (e.g. mutations such as endA or recA). We found that one can screen the number of strains which are likely to give good productivity early on, before any further optimisation and verification is performed, both for small and large plasmids. Also, it is worth noting that complex plasmid interactions with each strain prevent the use of genotype alone in making an intelligent choice for supercoiling optimisation. This leads to a third optimisation step selecting a few of the potentially high performing strains based on high DNA yield and supercoiling, with a view to identify the factors which need improvement in strain design and bioreactor optimisation. We found that high specific growth rates of some strains did not affect the level of DNA supercoiling but did influence the total plasmid yield, potentially an important aspect in the design of fermentation strategy. Interestingly, a few host/plasmid combinations result in what appears to be runaway plasmid replication. 相似文献
36.
Radical formation and hole transfer were investigated in crystals of cytosine.HCl (C.HCl) doped with 0-1.1 mol-% 5-methylcytosine x HCl (5MC x HCl). The doping level was determined by NMR spectroscopy. Crystals and polycrystalline samples were X-irradiated at 295 K, 77 K and 12 K and studied with EPR, ENDOR and FSE spectroscopy at these temperatures. At 295 K the dominant radicals were the so-called 3alphaH radical, formed in 5MC by a net H-abstraction from the methyl group, and the cytosine C6 H-addition (5-yl) radical. At 12 K five radicals were identified. These were the 3alphaH radical, cytosine reduction and oxidation products, and the cytosine C6 and C5 H-addition (5-yl and 6-yl, respectively) radicals. The spectroscopic parameters for the 3alphaH radical are very similar to those of a radical observed previously in the crystalline cytosine derivatives cytidine (CR), 2'deoxycytidine hydrochloride (CdR x HCl), 5'dCMP and 3'CMP as well as in the uracil derivative 2-thiouracil (2-TU). It was shown that amounts of the order of tenths of a percent 5MC x HCl doped into crystals of C.HCl give rise to a considerable yield of 3alphaH radicals after exposure to ionizing radiation both at room temperature and at lower temperatures. This supports a previous suggestion that naturally occurring 5-methylated cytosine impurities may be responsible for the formation of 3alphaH radicals in the crystalline cytosine derivatives CR, CdR.HCl, 5'dCMP and 3'CMP and suggests that the 3alphaH radical in these systems is a 5-methylated base-centered radical. The total radical yield in doped C x HCl crystals increased considerably with the doping level, both at low temperatures and at room temperature, implying that the 3alphaH radical is more stable than the primary cytosine radicals. The relative amounts of the 3alphaH radical were obtained by using simulated benchmark spectra to reconstruct experimental EPR spectra of doped polycrystalline samples. Evidence is presented suggesting that the enhanced yield of the 3alphaH radical in doped samples is due to holes originally formed at cytosine bases and transferred to 5-methylcytosine bases in addition to the 3alphaH radical being less exposed to recombination than other cytosine radicals. 相似文献
37.
When we reach out for an object with our hand, we transform visual information about the object's position into muscle contractions that will bring our digits to that position. If we reach out with a tool the transformation is different, because the muscle contractions must bring the critical part of the tool to the object, rather than the digits. The difference between the motion of the hand and that of the tool can be quite large, as when moving a computer mouse across a table to bring a cursor to a position on a screen. We examined the responses to unpredictable visual perturbations during such movements. People responded about as quickly to changes in the position of the target when pointing with the mouse as when doing so with their hand. They also responded about as quickly when the cursor was displaced as when the target was displaced. We show that this is not because the visually perceived separation between target and cursor is transformed into a desired displacement of the hand. Our conclusion is that our actions are controlled by the judged positions of the end-effector and the target, even when the former is quite detached from the muscles and joints that are involved in the action. 相似文献
38.
H. T. Law Aarati Sriram Charlotte Fevang Eli B. Nix Francis E. Nano Julian Andrew Guttman 《PloS one》2014,9(8)
The highly infectious bacteria, Francisella tularensis, colonize a variety of organs and replicate within both phagocytic as well as non-phagocytic cells, to cause the disease tularemia. These microbes contain a conserved cluster of important virulence genes referred to as the Francisella Pathogenicity Island (FPI). Two of the most characterized FPI genes, iglC and pdpA, play a central role in bacterial survival and proliferation within phagocytes, but do not influence bacterial internalization. Yet, their involvement in non-phagocytic epithelial cell infections remains unexplored. To examine the functions of IglC and PdpA on bacterial invasion and replication during epithelial cell infections, we infected liver and lung epithelial cells with F. novicida and F. tularensis ‘Type B’ Live Vaccine Strain (LVS) deletion mutants (ΔiglC and ΔpdpA) as well as their respective gene complements. We found that deletion of either gene significantly reduced their ability to invade and replicate in epithelial cells. Gene complementation of iglC and pdpA partially rescued bacterial invasion and intracellular growth. Additionally, substantial LAMP1-association with both deletion mutants was observed up to 12 h suggesting that the absence of IglC and PdpA caused deficiencies in their ability to dissociate from LAMP1-positive Francisella Containing Vacuoles (FCVs). This work provides the first evidence that IglC and PdpA are important pathogenic factors for invasion and intracellular growth of Francisella in epithelial cells, and further highlights the discrete mechanisms involved in Francisella infections between phagocytic and non-phagocytic cells. 相似文献
39.
The notorious biofouling organism Dreissena polymorpha (the zebra mussel) attaches to a variety of surfaces using a byssus, a series of protein threads that connect the animal to adhesive plaques secreted onto hard substrata. Here, the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize the composition of different regions of the byssus is reported. All parts of the byssus show mass peaks corresponding to small proteins in the range of 3.7-7 kDa, with distinctive differences between different regions. Indeed, spectra from thread and plaques are almost completely non-overlapping. In addition, several peaks were identified that are unique to the interfacial region of the plaque, and therefore likely represent specialized adhesive proteins. These results indicate a high level of control over the distribution of proteins, presumably with different functions, in the byssus of this freshwater species. 相似文献
40.
Laurence Rohmer Michael A Jacobs Mitchell J Brittnacher Christine Fong Hillary S Hayden Didier Hocquet Eli J Weiss Matthew Radey Yves Germani Kaisar Ali Talukder Anthony J Hager John M Kemner Elizabeth H Sims-Day Susana Matamouros Kyle R Hager Samuel I Miller 《BMC genomics》2014,15(1)