首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   9篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   4篇
  1976年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
11.
Phosphotriesterase (EC 3.1.8.1) was immobilized within a polyurethane foam matrix during polymer synthesis using a prepolymer synthesis strategy. In addition to retaining greater than 50% of the enzyme specific activity, numerous benefits were incurred upon immobilization. Orders of magnitude increases in storage and thermal stability (net stabilization energy = 12.5 kJ/mol) were observed without the need for enzyme premodification. The immobilized enzyme system was protease resistant and seemed to display no adverse effects from immobilization, such as an alteration of enzyme function. The organic solvent, dimethyl sulfoxide, also exhibited a stabilizing effect on phosphotriesterase enzyme systems over a range of intermediate concentrations. We attribute these effects in part to direct interaction between the aprotic solvent and metal containing residues present at the enzyme's active site. Our data demonstrate that just 2.5 kg of immobilized enzyme may be sufficient to degrade 30,000 tons of nerve agent in just 1 year. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 105-114, 1997.  相似文献   
12.
Viruses strongly influence the ecology and evolution of their eukaryotic hosts in the marine environment, but little is known about their diversity and distribution. Prasinoviruses infect an abundant and widespread class of phytoplankton, the Mamiellophyceae, and thereby exert a specific and important role in microbial ecosystems. However, molecular tools to specifically identify this viral genus in environmental samples are still lacking. We developed two primer sets, designed for use with polymerase chain reactions and 454 pyrosequencing technologies, to target two conserved genes, encoding the DNA polymerase (PolB gene) and the major capsid protein (MCP gene). While only one copy of the PolB gene is present in Prasinovirus genomes, there are at least seven paralogs for MCP, the copy we named number 6 being shared with other eukaryotic alga-infecting viruses. Primer sets for PolB and MCP6 were thus designed and tested on 6 samples from the Tara Oceans project. The results suggest that the MCP6 amplicons show greater richness but that PolB gave a wider coverage of Prasinovirus diversity. As a consequence, we recommend use of the PolB primer set, which will certainly reveal exciting new insights about the diversity and distribution of prasinoviruses at the community scale.  相似文献   
13.
14.
The structure, stability, solubility, and function of proteins depend on their net charge and on the ionization state of the individual residues. Consequently, biochemists are interested in the pK values of the ionizable groups in proteins and how these pK values depend on their environment. We review what has been learned about pK values of ionizable groups in proteins from experimental studies and discuss the important contributions they make to protein stability and solubility.  相似文献   
15.
16.
Increasing evidence suggests that aberrant DNA methylation changes may contribute to prostate cancer (PCa) ethnic disparity. To comprehensively identify DNA methylation alterations in PCa disparity, we used the Illumina 450K methylation platform to interrogate the methylation status of 485,577 CpG sites focusing on gene-associated regions of the human genome. Genomic DNA from African-American (AA; 7 normal and 3 cancers) and Caucasian (Cau; 8 normal and 3 cancers) was used in the analysis. Hierarchical clustering analysis identified probe-sets unique to AA and Cau samples, as well as common to both. We selected 25 promoter-associated novel CpG sites most differentially methylated by race (fold change > 1.5-fold; adjusted P < 0.05) and compared the β-value of these sites provided by the Illumina, Inc. array with quantitative methylation obtained by pyrosequencing in 7 prostate cell lines. We found very good concordance of the methylation levels between β-value and pyrosequencing. Gene expression analysis using qRT-PCR in a subset of 8 genes after treatment with 5-aza-2′-deoxycytidine and/or trichostatin showed up-regulation of gene expression in PCa cells. Quantitative analysis of 4 genes, SNRPN, SHANK2, MST1R, and ABCG5, in matched normal and PCa tissues derived from AA and Cau PCa patients demonstrated differential promoter methylation and concomitant differences in mRNA expression in prostate tissues from AA vs. Cau. Regression analysis in normal and PCa tissues as a function of race showed significantly higher methylation prevalence for SNRPN (P = 0.012), MST1R (P = 0.038), and ABCG5 (P < 0.0002) for AA vs. Cau samples. We selected the ABCG5 and SNRPN genes and verified their biological functions by Western blot analysis and siRNA gene knockout effects on cell proliferation and invasion in 4 PCa cell lines (2 AA and 2 Cau patients-derived lines). Knockdown of either ABCG5 or SNRPN resulted in a significant decrease in both invasion and proliferation in Cau PCa cell lines but we did not observe these remarkable loss-of-function effects in AA PCa cell lines. Our study demonstrates how differential genome-wide DNA methylation levels influence gene expression and biological functions in AA and Cau PCa.  相似文献   
17.
ERMs are closely related proteins involved in cell migration, cell adhesion, maintenance of cell shape, and formation of microvilli through their ability to cross-link the plasma membrane with the actin cytoskeleton. ELMO proteins are also known to regulate actin cytoskeleton reorganization through activation of the small GTPbinding protein Rac via the ELMO-Dock180 complex. Here we showed that ERM proteins associate directly with ELMO1 as purified recombinant proteins in vitro and at endogenous levels in intact cells. We mapped ERM binding on ELMO1 to the N-terminal 280 amino acids, which overlaps with the region required for binding to the GTPase RhoG, but is distinct from the C-terminal Dock180 binding region. Consistent with this, ELMO1 could simultaneously bind both radixin and Dock180, although radixin did not alter Rac activation via the Dock180-ELMO complex. Most interestingly, radixin binding did not affect ELMO binding to active RhoG and a trimeric complex of active RhoG-ELMO-radixin could be detected. Moreover, the three proteins colocalized at the plasma membrane. Finally, in contrast to most other ERM-binding proteins, ELMO1 binding occurred independently of the state of radixin C-terminal phosphorylation, suggesting an ELMO1 interaction with both the active and inactive forms of ERM proteins and implying a possible role of ELMO in localizing or retaining ERM proteins in certain cellular sites. Together these data suggest that ELMO1-mediated cytoskeletal changes may be coordinated with ERM protein crosslinking activity during dynamic cellular functions.  相似文献   
18.
Ostreococcus spp. are extremely small unicellular eukaryotic green algae found worldwide in marine environments, and they are susceptible to attacks by a diverse group of large DNA viruses. Several biologically distinct species of Ostreococcus are known and differ in the ecological niches that they occupy: while O. tauri (representing clade C strains) is found in marine lagoons and coastal seas, strains belonging to clade A, exemplified by O. lucimarinus, are present in different oceans. We used laboratory cultures of clonal isolates of these two species to assay for the presence of viruses in seawater samples from diverse locations. In keeping with the distributions of their host strains, we found a decline in the abundance of O. tauri viruses from a lagoon in southwest France relative to the Mediterranean Sea, whereas in the ocean, no O. tauri viruses were detected. In contrast, viruses infecting O. lucimarinus were detected from distantly separated oceans. DNA sequencing, phylogenetic analyses using a conserved viral marker gene, and a Mantel test revealed no relationship between geographic and phylogenetic distances in viruses infecting O. lucimarinus.Viruses are the most abundant and genetically diverse biological entities in marine environments (48). The three ways most often used to assess eukaryotic algal virus diversity are (i) using a functional host-virus system to quantify viruses specific to one host strain (i.e., culture-based studies) (4), (ii) using PCR amplification and sequencing a conserved gene (10, 12-14, 28), and (iii) using whole-community genome sequencing (i.e., metagenomics) (6, 8, 31). Recently, the advent of sequencing techniques like shotgun sequencing or pyrosequencing (38) has led to an increase in the number of metagenomics projects. The Global Ocean Sampling (GOS) Expedition has provided a unique opportunity to investigate viral diversity in different environments within the size fraction of 0.1 to 0.8 μm (39). The GOS data revealed highly abundant viral sequences (at least 3% of the predicted proteins had a viral origin) (53). In another study, the analysis of marine viromes from four oceanic regions suggested that the composition of viral assemblages depends on their geographic locations, but these authors conclude that similar viruses are widespread throughout the oceans (2). Despite these new methods and different ways to analyze viral diversity, we still do not really know if “everything is really everywhere” (7).The present study addresses a specific part of this problem: are viruses infecting a single host strain present at geographically distant locations? If several viral strains are identified and characterized, how closely do these viruses resemble one another on a phylogenetic scale? In order to answer these questions, we focused on a microalgal (Prasinophyceae)-virus (Prasinovirus) system. The studied hosts belong to the genus Ostreococcus, a ubiquitous prasinophyte picoeukaryotic alga abundant throughout the oceanic euphotic zone (55, 56). Several strains from this genus were isolated and assigned to four distinct ecotypes according to their growth parameters under different light regimens (22, 36), which correspond to four well-defined phylogenetic clades in an internal transcribed spacer (ITS)-based phylogeny (clades A to D). The complete genome sequences of two Ostreococcus species have been described: O. tauri (19) and O. lucimarinus (35). In the present study, viruses infecting specific host species (Ostreococcus spp.) have been screened from a variety of locations around the world.Among viruses infecting Ostreococcus, the genome of a single strain (OtV5) has been fully sequenced (18), and the phylogenetic relationships among several virus strains have been investigated (4). These viruses belong to the Prasinovirus group, a genus of the Phycodnaviridae family. Many viruses infecting phytoplankton are members of the Phycodnaviridae; they have double-stranded DNA genomes and large polyhedral capsids (20). In the prasinophyte-Prasinovirus system, the hosts and viruses can be grown on solid medium and are easily maintained in the laboratory. Ostreococcus viral strains have been isolated and characterized by phylogenetic analysis based on their B-family DNA polymerase (DNA pol) partial gene sequence (4). This DNA polymerase is a useful marker for phylogenetic analyses because its sequence is well conserved in all known members of nucleocytoplasmic large DNA viruses (NCLDVs) (26), including Phycodnaviridae. Furthermore, several previous studies have examined the abundance and the genetic diversity of marine eukaryotic viruses using environmental sequencing approaches and amplified DNA pol gene fragments (11, 12, 43-46), and Monier et al. (31) used this marker to describe the taxonomic distribution of large DNA viruses from the GOS data.The first stage of this study was to isolate Ostreococcus viruses from different worldwide geographic locations, by culturing on various host strains. In a second stage, these viral strains were characterized via the sequencing of their pol sequence (encoding a part of their DNA polymerase gene), and their specificity toward different host strains was assessed in order to assess the potential host range of the viral strains isolated and to gain a better understanding of their population dynamics and distribution. Finally we compared these new Prasinovirus DNA sequences with metagenomic sequence data (obtained from sampling all around the world) and environmental sequence data identified using BLAST similarity to assess the global distribution of similar Ostreococcus viruses.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号