首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1084篇
  免费   108篇
  国内免费   17篇
  1209篇
  2023年   6篇
  2022年   10篇
  2021年   25篇
  2020年   14篇
  2019年   13篇
  2018年   16篇
  2017年   13篇
  2016年   24篇
  2015年   39篇
  2014年   47篇
  2013年   55篇
  2012年   74篇
  2011年   72篇
  2010年   39篇
  2009年   36篇
  2008年   49篇
  2007年   41篇
  2006年   41篇
  2005年   34篇
  2004年   34篇
  2003年   39篇
  2002年   33篇
  2001年   36篇
  2000年   43篇
  1999年   35篇
  1998年   33篇
  1997年   29篇
  1996年   12篇
  1995年   19篇
  1994年   6篇
  1993年   9篇
  1992年   16篇
  1991年   23篇
  1990年   16篇
  1989年   14篇
  1988年   13篇
  1987年   6篇
  1986年   9篇
  1985年   8篇
  1984年   6篇
  1983年   7篇
  1981年   9篇
  1980年   6篇
  1979年   14篇
  1978年   11篇
  1977年   12篇
  1976年   6篇
  1974年   5篇
  1973年   5篇
  1967年   10篇
排序方式: 共有1209条查询结果,搜索用时 15 毫秒
51.
目的对实验动物皮肤病原真菌2种培养方法进行了比较。方法将采集到的3只皮肤真菌感染病兔样品经由沙氏平皿法和沙氏试管斜面培养法分别进行培养。结果在3只真菌感染病兔中应用试管斜面法我们只检测到1例皮肤病原真菌阳性,而采用沙氏平皿法3例阳性全部检出。结论结合临床检测经验,我们认为本研究的沙氏平皿法优于沙氏试管斜面法,在实验动物皮肤病原真菌常规检测中具有推广应用价值。  相似文献   
52.
53.
Ycf53 is a hypothetical chloroplast open reading frame with similarity to the Arabidopsis nuclear gene GUN4. In plants, GUN4 is involved in tetrapyrrole biosynthesis. We demonstrate that one of the two Synechocystis sp. PCC 6803 ycf53 genes with similarity to GUN4 functions in chlorophyll (Chl) biosynthesis as well: cyanobacterial gun4 mutant cells exhibit lower Chl contents, accumulate protoporphyrin IX and show less activity not only of Mg chelatase but also of Fe chelatase. The possible role of Gun4 for the Mg as well as Fe porphyrin biosynthesis branches in Synechocystis sp. PCC 6803 is discussed.  相似文献   
54.
Folding of the cerebral cortex is a critical phase of brain development in higher mammals but the biomechanics of folding remain incompletely understood. During folding, the growth of the cortical surface is heterogeneous and anisotropic. We developed and applied a new technique to measure spatial and directional variations in surface growth from longitudinal magnetic resonance imaging (MRI) studies of a single animal or human subject. MRI provides high resolution 3D image volumes of the brain at different stages of development. Surface representations of the cerebral cortex are obtained by segmentation of these volumes. Estimation of local surface growth between two times requires establishment of a point-to-point correspondence ("registration") between surfaces measured at those times. Here we present a novel approach for the registration of two surfaces in which an energy function is minimized by solving a partial differential equation on a spherical surface. The energy function includes a strain-energy term due to distortion and an "error energy" term due to mismatch between surface features. This algorithm, implemented with the finite element method, brings surface features into approximate alignment while minimizing deformation in regions without explicit matching criteria. The method was validated by application to three simulated test cases and applied to characterize growth of the ferret cortex during folding. Cortical surfaces were created from MRI data acquired in vivo at 14 days, 21 days, and 28 days of life. Deformation gradient and Lagrangian strain tensors describe the kinematics of growth over this interval. These quantitative results illuminate the spatial, temporal, and directional patterns of growth during cortical folding.  相似文献   
55.
The distribution of Na+ pump sites (Na+-K+-ATPase) in the secretory epithelium of the avian salt gland was demonstrated by freeze-dry autoradiographic analysis of [(3)H] ouabain binding sites. Kinetic studies indicated that near saturation of tissue binding sites occurred when slices of salt glands from salt-stressed ducks were exposed to 2.2 μM ouabain (containing 5 μCi/ml [(3)H]ouabain) for 90 min. Washing with label-free Ringer's solution for 90 min extracted only 10% of the inhibitor, an amount which corresponded to ouabain present in the tissue spaces labeled by [(14)C]insulin. Increasing the KCl concentration of the incubation medium reduced the rate of ouabain binding but not the maximal amount bound. In contrast to the low level of ouabain binding to salt glands of ducks maintained on a freshwater regimen, exposure to a salt water diet led to a more than threefold increase in binding within 9-11 days. This increase paralleled the similar increment in Na+-K+-ATPase activity described previously. [(3)H]ouabain binding sites were localized autoradiographically to the folded basolateral plasma membrane of the principal secretory cells. The luminal surfaces of these cells were unlabeled. Mitotically active peripheral cells were also unlabeled. The cell-specific pattern of [(3)H]ouabain binding to principal secretory cells and the membrane-specific localization of binding sites to the nonluminal surfaces of these cells were identical to the distribution of Na+-K+-ATPase as reflected by the cytochemical localization of ouabain-sensitive and K+-dependent nitrophenyl phosphatase activity. The relationship between the nonluminal localization of Na+-K+-ATPase and the possible role of the enzyme n NaCl secretion is considered in the light of physiological data on electrolyte transport in salt glands and other secretory epithelia.  相似文献   
56.
57.
The enzymatic catalysis of many biological processes of life is supported by the presence of cofactors and prosthetic groups originating from the common tetrapyrrole precursor uroporphyrinogen-III. Uroporphyrinogen-III decarboxylase catalyzes its conversion into coproporphyrinogen-III, leading in plants to chlorophyll and heme biosynthesis. Here we report the first crystal structure of a plant (Nicotiana tabacum) uroporphyrinogen-III decarboxylase, together with the molecular modeling of substrate binding in tobacco and human enzymes. Its structural comparison with the homologous human protein reveals a similar catalytic cleft with six invariant polar residues, Arg(32), Arg(36), Asp(82), Ser(214) (Thr in Escherichia coli), Tyr(159), and His(329) (tobacco numbering). The functional relationships obtained from the structural and modeling analyses of both enzymes allowed the proposal for a refined catalytic mechanism. Asp(82) and Tyr(159) seem to be the catalytic functional groups, whereas the other residues may serve in substrate recognition and binding, with Arg(32) steering its insertion. The crystallographic dimer appears to represent the protein dimer under physiological conditions. The dimeric arrangement offers a plausible mechanism at least for the first two (out of four) decarboxylation steps.  相似文献   
58.
59.
A key element in the regulation of mammalian steroid biosynthesis is the 18 kDa peripheral-type benzodiazepine receptor (PBR), which mediates mitochondrial cholesterol import. PBR also possess an affinity to the tetrapyrrole metabolite protoporphyrin. The bacterial homolog to the mammalian PBR, the Rhodobacter TspO (CrtK) protein, was shown to be involved in the bacterial tetrapyrrole metabolism. Looking for a similar mitochondrial import mechanism in plants, protein sequences from Arabidopsis and several other plants were found with significant similarities to the mammalian PBR and to the Rhodobacter TspO protein. A PBR-homologous Arabidopsis sequence was cloned and expressed in E. coli. The recombinant gene product showed specific high affinity benzodiazepine ligand binding. Moreover, the protein applied to E. coli protoplasts caused an equal benzodiazepine-stimulated uptake of cholesterol and protoporphyrin IX. These results suggest that the PBR like protein is involved in steroid import and is directing protoporphyrinogen IX to the mitochondrial site of protoheme formation.  相似文献   
60.
The activation of caspase-3 represents a critical step in the pathways leading to the biochemical and morphological changes that underlie apoptosis. Upon induction of apoptosis, the large (p17) and small (p12) subunits, comprising active caspase-3, are generated via proteolytic processing of a latent proenzyme dimer. Two copies of each individual subunit are generated to form an active heterotetramer. The tetrameric form of caspase-3 cleaves specific protein substrates within the cell, thereby producing the apoptotic phenotype. In contrast to the proenzyme, once activated in HeLa cells, caspase-3 is difficult to detect due to its rapid degradation. Interestingly, however, enzyme stability and therefore detection of active caspase-3 by immunoblot analysis can be restored by treatment of cells with a peptide-based caspase-3 selective inhibitor, suggesting that the active form can be stabilized through protein-inhibitor interaction. The heteromeric active enzyme complex is necessary for its stabilization by inhibitors, as expression of the large subunit alone is not stabilized by the presence of inhibitors. Our results show for the first time, that synthetic caspase inhibitors not only block caspase activity, but may also increase the stability of otherwise rapidly degraded mature caspase complexes. Consistent with these findings, experiments with a catalytically inactive mutant of caspase-3 show that rapid turnover is dependent on the activity of the mature enzyme. Furthermore, turnover of otherwise stable active site mutants of capase-3 is rescued by the presence of the active enzyme suggesting that turnover can be mediated in trans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号