首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   25篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   9篇
  2015年   13篇
  2014年   6篇
  2013年   16篇
  2012年   13篇
  2011年   19篇
  2010年   12篇
  2009年   13篇
  2008年   15篇
  2007年   13篇
  2006年   9篇
  2005年   13篇
  2004年   17篇
  2003年   16篇
  2002年   11篇
  2001年   1篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1994年   2篇
  1992年   1篇
  1991年   7篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1978年   1篇
  1976年   3篇
  1968年   1篇
  1967年   2篇
排序方式: 共有268条查询结果,搜索用时 31 毫秒
91.
An abundant oxidative lesion, 8-oxo-7,8-dihydroguanine (8-oxoG), often directs the misincorporation of dAMP during replication. To prevent mutations, cells possess an enzymatic system for the removal of 8-oxoG. A key element of this system is 8-oxoguanine-DNA glycosylase (Fpg in bacteria, OGG1 in eukaryotes), which must excise 8-oxoG from 8-oxoG:C pairs but not from 8-oxoG:A. We investigated the influence of various factors, including ionic strength, the presence of Mg(2+) and organic anions, polyamides, crowding agents and two small heterocyclic compounds (biotin and caffeine) on the activity and opposite-base specificity of Escherichia coli Fpg and human OGG1. The activity of both enzymes towards 8-oxoG:A decreased sharply with increasing salt and Mg(2+) concentration, whereas the activity on 8-oxoG:C was much more stable, resulting in higher opposite-base specificity when salt and Mg(2+) were at near-physiological concentrations. This tendency was observed with both Cl(-) and glutamate as the major anions in the reaction mixture. Kinetic and binding parameters for the processing of 8-oxoG:C and 8-oxoG:A by Fpg and OGG1 were determined under several different conditions. Polyamines, crowding agents, biotin and caffeine affected the activity and specificity of Fpg or OGG1 only marginally. We conclude that, in the intracellular environment, the specificity of Fpg and OGG1 for 8-oxoG:C versus 8-oxoG:A is mostly due to high ionic strength and Mg(2+).  相似文献   
92.
The U1, U2, U4, U5, and U6 small nuclear ribonucleoproteins (snRNPs) form essential components of spliceosomes, the machinery that removes introns from pre-mRNAs in eukaryotic cells. A critical initial step in the complex process of snRNP biogenesis is the assembly of a group of common core proteins (Sm proteins) on spliceosomal snRNA. In this study we show by multiple independent methods that the protein pICln associates with Sm proteins in vivo and in vitro. The binding of pICln to Sm proteins interferes with Sm protein assembly on spliceosomal snRNAs and inhibits import of snRNAs into the nucleus. Furthermore, pICln prevents the interaction of Sm proteins with the survival of motor neurons (SMN) protein, an interaction that has been shown to be critical for snRNP biogenesis. These findings lead us to propose a model in which pICln participates in the regulation of snRNP biogenesis, at least in part by interfering with Sm protein interaction with SMN protein.  相似文献   
93.
The composition of fish, their location and movements in the channel, channel depressions, and flood waters of the lower reaches of the Irtysh River are investigated. This study is conducted with computer sonar systems used for different purposes. Diurnal and seasonal dynamics of movements of the fish and the abundance and composition of fish aggregations are revealed in the studied sites. The biological unity of the fish community of the floodplain-channel complex is demonstrated.  相似文献   
94.
Borisenko, I. and Ereskovsky, A.V. 2011. Tentacular apparatus ultrastructure in the larva of Bolinopsis infundibulum (Lobata: Ctenophora). —Acta Zoologica (Stockholm) 00 : 1–10. Most ctenophores have a tentacular apparatus, which plays some role in their feeding. Tentacle structure has been described in adults of only three ctenophore species, but the larval tentacles have remained completely unstudied. We made a light and electron microscopic study of the tentacular apparatus in the larvae of Bolinopsis infundibulum from the White Sea. The tentacular apparatus of B. infundibulum larvae consists of the tentacle proper and the tentacle root. The former contains terminally differentiated cells, while the latter contains stem cells and cells undergoing differentiation. The core of the tentacle is formed by myocytes, and its epidermis contains colloblasts (hunting cells), wall cells, degenerating cask cells, refractive vesicles, and ciliated sensory cells. Stem cells, colloblasts, and cask cells at various stages of differentiation and putative myocytes progenitors were revealed in the tentacle root. Two different populations of the stem cells in the tentacle root give rise to epidermal (colloblasts and cask cells) and mesogleal (myocytes) cell lines. Nervous elements, glandular cells, and basal lamina were not found. Step‐by‐step differentiation of colloblasts and cask cells is described.  相似文献   
95.
Microcalorimetric study of the domain organization of serum albumin   总被引:1,自引:0,他引:1  
Scanning microcalorimetry was used for studying the melting of the structure of human and bovine serum albumins and their fragments. It was shown that the melting of the native structure of serum albumin observed by the excessive heat absorption is a complex process which is described by three simple transitions overlapping in temperature. This means that the serum albumin molecule consists of three more or less independent cooperative structures, domains.  相似文献   
96.
IS elements were identified in the genomes of five Acidithiobacillus ferrooxidans strains isolated from various media. IST2 elements were revealed in all the strains grown in a medium with ferrous iron, ISAfe1 elements were detected in four strains (TFBk, TFL-2, TFV-1 and TFO). Three strains (TFV-1, TFN-d and TFO) were found to contain IS elements, ~600 bp long. These were named preliminary as ISAfe600. Partial sequencing of the 5′- and 3′-terminal nucleotide stretches of an ISAfe1 element in TFBk and TFL-2 strains and complete sequencing of the ISAfe1 element in the TFBk strain has revealed nucleotide substitutions as compared to the prototype, i.e., the ISAfe1 element of an ATCC 19859 strain. Partial sequencing of the 5′- and 3′-terminal nucleotide stretches of the IST2 elements in TFO, TFBk and TFL-2 strains has shown numerous nucleotide substitutions when compared to the IST2 element of an ATCC 19859 strain. Complete sequencing of the IST2 element in the TFBk strain has revealed: the divergence between the IST2 elements in the TFBk strain and the prototype was 21.2%. Southern hybridization of EcoRI fragments of the chromosomal DNA from five A. ferrooxidans strains grown in a medium with ferrous iron using an internal region of ISAfe1, a full-length ISAfe1 or a full-length IST2 as probes has shown them to differ in the number of copies of IS elements and their localization on the chromosomes. Adaptation to elemental sulfur in A. ferrooxidans strains caused changes in the number, intensity and localization of hybridization bands. The authors discuss the role of IS elements in the adaptation of A. ferrooxidans to the new energy substrate. The nucleotide sequence data reported in this paper were deposited in GenBank under accession numbers: AY823401, the ISAfe1 from A. ferrooxidans TFBk; AY825254, the IST2 from TFBk; DQ002894, the 5′-terminal nucleotide sequence of ISAfe1 from TFL-2; DQ002895, the 3′-terminal nucleotide sequence of ISAfe1 from TFL-2; DQ005952, the 5′-terminal nucleotide sequence of IST2 from TFV-1; DQ005953, the 3′-terminal nucleotide sequence of IST2 from TFV-1.  相似文献   
97.
Sleeth KM  Robson RL  Dianov GL 《Biochemistry》2004,43(40):12924-12930
In mammalian cells, DNA ligase IIIalpha and DNA ligase I participate in the short- and long-patch base excision repair pathways, respectively. Using an in vitro repair assay employing DNA ligase-depleted cell extracts and DNA substrates containing a single lesion repaired either through short-patch (regular abasic site) or long-patch (reduced abasic site) base excision repair pathways, we addressed the question whether DNA ligases are specific to each pathway or if they are exchangeable. We find that immunodepletion of DNA ligase I did not affect the short-patch repair pathway but blocked long-patch repair, suggesting that DNA ligase IIIalpha is not able to substitute DNA ligase I during long-patch repair. In contrast, immunodepletion of DNA ligase IIIalpha did not significantly affect either pathway. Moreover, repair of normal abasic sites in wild-type and X-ray cross-complementing gene 1 (XRCC1)-DNA ligase IIIalpha-immunodepleted cell extracts involved similar proportions of short- and long-patch repair events. This suggests that DNA ligase I was able to efficiently substitute the XRCC1-DNA ligase IIIalpha complex during short-patch repair.  相似文献   
98.
X-ray repair cross-complementing protein-1 (XRCC1)-deficient cells are sensitive to DNA damaging agents and have delayed processing of DNA base lesions. In support of its role in base excision repair, it was found that XRCC1 forms a tight complex with DNA ligase IIIα and also interacts with DNA polymerase β (Pol β) and other base excision repair (BER) proteins. We have isolated wild-type XRCC1–DNA ligase IIIα heterodimer and mutated XRCC1–DNA ligase IIIα complex that does not interact with Pol β and tested their activities in BER reconstituted with human purified proteins. We find that a point mutation in the XRCC1 protein which disrupts functional interaction with Pol β, affected the ligation efficiency of the mutant XRCC1–DNA ligase IIIα heterodimer in reconstituted BER reactions. We also compared sensitivity to hydrogen peroxide between wild-type CHO-9 cells, XRCC1-deficient EM-C11 cells and EM-C11 cells transfected with empty plasmid vector or with plasmid vector carrying wild-type or mutant XRCC1 gene and find that the plasmid encoding XRCC1 protein, that does not interact with Pol β has reduced ability to rescue the hydrogen peroxide sensitivity of XRCC1- deficient cells. These data suggest an important role for the XRCC1–Pol β interaction for coordinating the efficiency of the BER process.  相似文献   
99.
DNA single-strand breaks containing 3′-8-oxoguanine (3′-8-oxoG) ends can arise as a consequence of ionizing radiation and as a result of DNA polymerase infidelity by misincorporation of 8-oxodGMP. In this study we examined the mechanism of repair of 3′-8-oxoG within a single-strand break using purified base excision repair enzymes and human whole cell extracts. We find that 3′-8-oxoG inhibits ligation by DNA ligase IIIα or DNA ligase I, inhibits extension by DNA polymerase β and that the lesion is resistant to excision by DNA glycosylases involved in the repair of oxidative lesions in human cells. However, we find that purified human AP-endonuclease 1 (APE1) is able to remove 3′-8-oxoG lesions. By fractionation of human whole cell extracts and immunoprecipitation of fractions containing 3′-8-oxoG excision activity, we further demonstrate that APE1 is the major activity involved in the repair of 3′-8-oxoG lesions in human cells and finally we reconstituted repair of the 3′-8-oxoG-containing oligonucleotide duplex with purified human enzymes including APE1, DNA polymerase β and DNA ligase IIIα.  相似文献   
100.
The toolbox of instruments regulating access, transfer and use of biological material is currently re-equipped: the Nagoya Protocol was initiated to provide a legal framework to the third objective of the Convention on Biological Diversity – the fair and equitable sharing of benefits arising from the utilisation of genetic resources and associated traditional knowledge (an aspect not discussed here). In the ongoing implementation of the protocol, potentially harmful and far-reaching effects on biological research become evident. Here, we illustrate how vague definitions, lack of legal clarity and coordination, and often restrictive and complex regulations affect the transfer of biological material and associated data. Instead of promoting basic research in conservation and biodiversity, the current situation potentially jeopardises international collaboration, biodiversity research and its applications in monitoring, biocontrol and food safety. We address these challenges and discuss possible options for its practical implementation in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号