全文获取类型
收费全文 | 65篇 |
免费 | 5篇 |
专业分类
70篇 |
出版年
2020年 | 1篇 |
2019年 | 1篇 |
2015年 | 3篇 |
2014年 | 7篇 |
2013年 | 4篇 |
2012年 | 5篇 |
2011年 | 7篇 |
2010年 | 2篇 |
2009年 | 1篇 |
2008年 | 5篇 |
2007年 | 3篇 |
2006年 | 1篇 |
2005年 | 4篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2002年 | 3篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1971年 | 1篇 |
1967年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有70条查询结果,搜索用时 15 毫秒
61.
Jeffrey E. Markowitz William A. Liberti III Grigori Guitchounts Tarciso Velho Carlos Lois Timothy J. Gardner 《PLoS biology》2015,13(6)
Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From “time cells” in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 µm. Within this length scale, basal-ganglia–projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song. 相似文献
62.
Natalia P. Sharova Tatiana M. Astakhova Yaroslava D. Karpova Yulia V. Lyupina Alexander I. Alekhin Nikolai G. Goncharov Ilia R. Sumedi Vyacheslav A. Cherner Grigori V. Rodoman Nikolai A. Kuznetsov Pavel A. Erokhov 《Central European Journal of Biology》2011,6(4):486-496
Searching the antitumor drug targets among proteasomes, “ubiquitous” enzyme systems, may provide a new impulse to the antitumor drug discovery. In this study, changes in the proteasome pool in the development of human papillary thyroid carcinoma were determined. Proteasome activities were evaluated by hydrolysis of commercial fluorogenic peptides. Changes in the expression of the total proteasome pool, proteasome 19S activator and proteolytic constitutive subunits X(β5), Y(β1) and immune subunits LMP7 (β5i) and LMP2 (β1i) were investigated by Western blotting. The distribution of the proteasome subunits in thyroid gland cells was detected by immunohistochemistry. It was shown that the chymotrypsin- and caspase-like activities as well as the expression of the total proteasome pool, proteasome 19S activator and immune subunits increased gradually in the tumors at the T2N0M0 and T3N0M0 stages in comparison with the control tissues. Among the structures studied, the expression of the 19S activator and immune proteasomes, which contain the LMP2 (β1i) subunit, was enhanced to the largest degree in tumor cells. The data obtained may be implicated in a new therapeutic strategy. Taking into consideration the antitumor function of the immune proteasomes, we advance the 19S activator as the target for the development of a novel antitumor therapy. 相似文献
63.
Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages 总被引:26,自引:0,他引:26
Seaberg RM Smukler SR Kieffer TJ Enikolopov G Asghar Z Wheeler MB Korbutt G van der Kooy D 《Nature biotechnology》2004,22(9):1115-1124
The clonal isolation of putative adult pancreatic precursors has been an elusive goal of researchers seeking to develop cell replacement strategies for diabetes. We report the clonal identification of multipotent precursor cells from the adult mouse pancreas. The application of a serum-free, colony-forming assay to pancreatic cells enabled the identification of precursors from pancreatic islet and ductal populations. These cells proliferate in vitro to form clonal colonies that coexpress neural and pancreatic precursor markers. Upon differentiation, individual clonal colonies produce distinct populations of neurons and glial cells, pancreatic endocrine beta-, alpha- and delta-cells, and pancreatic exocrine and stellate cells. Moreover, the newly generated beta-like cells demonstrate glucose-dependent Ca(2+) responsiveness and insulin release. Pancreas colonies do not express markers of embryonic stem cells, nor genes suggestive of mesodermal or neural crest origins. These cells represent a previously unidentified adult intrinsic pancreatic precursor population and are a promising candidate for cell-based therapeutic strategies. 相似文献
64.
FCDI (fast Ca2?-dependent inactivation) is a mechanism that limits Ca2? entry through Ca2? channels, including CRAC (Ca2? release-activated Ca2?) channels. This phenomenon occurs when the Ca2? concentration rises beyond a certain level in the vicinity of the intracellular mouth of the channel pore. In CRAC channels, several regions of the pore-forming protein Orai1, and STIM1 (stromal interaction molecule 1), the sarcoplasmic/endoplasmic reticulum Ca2? sensor that communicates the Ca2? load of the intracellular stores to Orai1, have been shown to regulate fast Ca2?-dependent inactivation. Although significant advances in unravelling the mechanisms of CRAC channel gating have occurred, the mechanisms regulating fast Ca2?-dependent inactivation in this channel are not well understood. We have identified that a pore mutation, E106D Orai1, changes the kinetics and voltage dependence of the ICRAC (CRAC current), and the selectivity of the Ca2?-binding site that regulates fast Ca2?-dependent inactivation, whereas the V102I and E190Q mutants when expressed at appropriate ratios with STIM1 have fast Ca2?-dependent inactivation similar to that of WT (wild-type) Orai1. Unexpectedly, the E106D mutation also changes the pH dependence of ICRAC. Unlike WT ICRAC, E106D-mediated current is not inhibited at low pH, but instead the block of Na? permeation through the E106D Orai1 pore by Ca2? is diminished. These results suggest that Glu1?? inside the CRAC channel pore is involved in co-ordinating the Ca2?-binding site that mediates fast Ca2?-dependent inactivation. 相似文献
65.
Makhaeva GF Iankovskaia VL Kovaleva NV Fetisov VI Malygin VV Torgasheva NA Khaskin BA 《Bioorganicheskaia khimiia》1999,25(1):3-7
The interaction kinetics of potential pesticides, O,O-dialkyl S-bromomethylthiophosphates (RO)2P(O) SCH2Br (R = Et, i-Pr, n-Pr, n-Bu, or n-Am) with acetylcholinesterase, butyryl cholinesterase, and carboxyl esterase from warm-blooded animals was studied. All the compounds irreversibly inhibit these esterases, with k1 (M-1 min-1) being 1.8 x 10(4) - 1.9 x 10(6) for acetylcholinesterase, 2.0 x 10(6) - 4.1 x 10(7) for the more sensitive butyryl cholinesterase, and 2.3 x 10(7) - 2.3 x 10(8) and higher for the most sensitive carboxyl esterase. By using the Hansch and Kubinyi technique of multiple regression analysis, we quantitatively analyzed the relationship between the structure and inhibiting activity of these substances toward acetylcholinesterase and butyryl cholinesterase. Hydrophobic interactions were found to be important for the inhibition of both enzymes but are more pronounced in the case of butyryl cholinesterase. On the other hand, steric factors were much more significant in the inhibition of acetylcholinesterase. For both enzymes, the steric hindrances affect the phosphorylation stage of the enzyme. 相似文献
66.
67.
68.
69.
70.