首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   5篇
  2020年   1篇
  2019年   1篇
  2015年   3篇
  2014年   7篇
  2013年   4篇
  2012年   5篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1971年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有70条查询结果,搜索用时 46 毫秒
51.
In an analysis of allozyme genes in three pine and one spruce species distributed in Eurasia, 45 of 87 loci were mapped. Four linkage groups inPinus sylvestris andPicea abies, three inPinus pallasiana, and two inPinus pumila were determined. The order and the locations of homologous genes in the linkage groups in the different species were similar. The data suggest that during the separate development of thePinus andPicea genera that has lasted for millions of years, there was not any large inversion, translocation, or other significant chromosomal change, at least in the gene blocks analyzed.  相似文献   
52.
Repetitive hormone-induced changes in concentration of free cytoplasmic Ca2+ in hepatocytes require Ca2+ entry through receptor-activated Ca2+ channels and SOCs (store-operated Ca2+ channels). SOCs are activated by a decrease in Ca2+ concentration in the intracellular Ca2+ stores, but the molecular components and mechanisms are not well understood. Some studies with other cell types suggest that PLC-gamma (phospholipase C-gamma) is involved in the activation of receptor-activated Ca2+ channels and/or SOCs, independently of PLC-gamma-mediated generation of IP3 (inositol 1,4,5-trisphosphate). The nature of the Ca2+ channels regulated by PLC-gamma has not been defined clearly. The aim of the present study was to determine if PLC-gamma is required for the activation of SOCs in liver cells. Transfection of H4IIE cells derived from rat hepatocytes with siRNA (short interfering RNA) targeted to PLC-gamma1 caused a reduction (by approx. 70%) in the PLC-gamma1 protein expression, with maximal effect at 72-96 h. This was associated with a decrease (by approx. 60%) in the amplitude of the I(SOC) (store-operated Ca2+ current) developed in response to intracellular perfusion with either IP(3) or thapsigargin. Knockdown of STIM1 (stromal interaction molecule type 1) by siRNA also resulted in a significant reduction (approx. 80% at 72 h post-transfection) of the I(SOC) amplitude. Immunoprecipitation of PLC-gamma1 and STIM1, however, suggested that under the experimental conditions these proteins do not interact with each other. It is concluded that the PLC-gamma1 protein, independently of IP3 generation and STIM1, is required to couple endoplasmic reticulum Ca2+ release to the activation of SOCs in the plasma membrane of H4IIE liver cells.  相似文献   
53.
54.
We describe a novel stress-induced gene, noxin, and a knockout mouse line with an inactivated noxin gene. The noxin gene does not have sequelogs in the genome and encodes a highly serine-rich protein with predicted phosphorylation sites for ATM, Akt, and DNA-dependent protein kinase kinases; nuclear localization signals; and a Zn finger domain. noxin mRNA and protein levels are under tight control by the cell cycle. noxin, identified as a nitric oxide-inducible gene, is strongly induced by a wide range of stress signals: gamma- and UV irradiation, hydrogen peroxide, adriamycin, and cytokines. This induction is dependent on p53. Noxin accumulates in the nucleus in response to stress and, when ectopically expressed, Noxin arrests the cell cycle at G1; although it also induces p53, the cell cycle arrest function of Noxin is independent of p53 activity. noxin knockout mice are viable and fertile; however, they have an enlarged heart, several altered hematopoietic parameters, and a decreased number of spermatids. Importantly, loss or downregulation of Noxin leads to increased cell death. Our results suggest that Noxin may be a component of the cell defense system: it is activated by various stress stimuli, helps cells to withdraw from cycling, and opposes apoptosis.  相似文献   
55.
56.
Baculovirus p33 Binds Human p53 and Enhances p53-Mediated Apoptosis   总被引:3,自引:2,他引:1       下载免费PDF全文
In vertebrates, p53 participates in numerous biological processes including cell cycle regulation, apoptosis, differentiation, and oncogenic transformation. When insect SF-21 cells were infected with a recombinant of the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) overexpressing human p53, p53 formed a stable complex with the product of the AcMNPV orf92, a novel protein p33. The interaction between p53 and p33 was further confirmed by immunoprecipitation studies. When individually expressed in SF-21 cells, human p53 localized mainly in the nucleus whereas baculovirus p33 displayed diffuse cytoplasmic staining and punctuate nuclear staining. However, coexpression of p33 with p53 resulted in exclusive nuclear localization of p33. In both SF-21 and TN-368 cells, p53 expression induced typical features of apoptosis including nuclear condensation and fragmentation, oligonucleosomal ladder formation, cell surface blebbing, and apoptotic body formation. Coexpression of p53 with a baculovirus inhibitor of apoptosis, p35, OpIAP, or CpIAP, blocked apoptosis, whereas coexpression with p33 enhanced p53-mediated apoptosis approximately twofold. Expression of p53 in SF-21 cells stably expressing OpIAP inhibited cell growth in the presence or absence of p33. Thus, human p53 can influence both insect cell growth and death and baculovirus p33 can modulate the death-inducing effects of p53.  相似文献   
57.
The p53 homolog p63 is essential for development, yet its role in cancer is not clear. We discovered that p63 deficiency evokes the tumor-suppressive mechanism of cellular senescence, causing a striking absence of stratified epithelia such as the skin. Here we identify the predominant p63 isoform, ΔNp63α, as a protein that bypasses oncogene-induced senescence to drive tumorigenesis in?vivo. Interestingly, bypass of senescence promotes stem-like proliferation and maintains survival of the keratin 15-positive stem cell population. Furthermore, we identify the chromatin-remodeling protein Lsh as a new target of ΔNp63α that is an essential mediator of senescence bypass. These findings indicate that ΔNp63α is an oncogene that cooperates with Ras to promote tumor-initiating stem-like proliferation and suggest that Lsh-mediated chromatin-remodeling events are critical to this process.  相似文献   
58.
Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From “time cells” in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 µm. Within this length scale, basal-ganglia–projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song.  相似文献   
59.
Searching the antitumor drug targets among proteasomes, “ubiquitous” enzyme systems, may provide a new impulse to the antitumor drug discovery. In this study, changes in the proteasome pool in the development of human papillary thyroid carcinoma were determined. Proteasome activities were evaluated by hydrolysis of commercial fluorogenic peptides. Changes in the expression of the total proteasome pool, proteasome 19S activator and proteolytic constitutive subunits X(β5), Y(β1) and immune subunits LMP7 (β5i) and LMP2 (β1i) were investigated by Western blotting. The distribution of the proteasome subunits in thyroid gland cells was detected by immunohistochemistry. It was shown that the chymotrypsin- and caspase-like activities as well as the expression of the total proteasome pool, proteasome 19S activator and immune subunits increased gradually in the tumors at the T2N0M0 and T3N0M0 stages in comparison with the control tissues. Among the structures studied, the expression of the 19S activator and immune proteasomes, which contain the LMP2 (β1i) subunit, was enhanced to the largest degree in tumor cells. The data obtained may be implicated in a new therapeutic strategy. Taking into consideration the antitumor function of the immune proteasomes, we advance the 19S activator as the target for the development of a novel antitumor therapy.  相似文献   
60.
FCDI (fast Ca2?-dependent inactivation) is a mechanism that limits Ca2? entry through Ca2? channels, including CRAC (Ca2? release-activated Ca2?) channels. This phenomenon occurs when the Ca2? concentration rises beyond a certain level in the vicinity of the intracellular mouth of the channel pore. In CRAC channels, several regions of the pore-forming protein Orai1, and STIM1 (stromal interaction molecule 1), the sarcoplasmic/endoplasmic reticulum Ca2? sensor that communicates the Ca2? load of the intracellular stores to Orai1, have been shown to regulate fast Ca2?-dependent inactivation. Although significant advances in unravelling the mechanisms of CRAC channel gating have occurred, the mechanisms regulating fast Ca2?-dependent inactivation in this channel are not well understood. We have identified that a pore mutation, E106D Orai1, changes the kinetics and voltage dependence of the ICRAC (CRAC current), and the selectivity of the Ca2?-binding site that regulates fast Ca2?-dependent inactivation, whereas the V102I and E190Q mutants when expressed at appropriate ratios with STIM1 have fast Ca2?-dependent inactivation similar to that of WT (wild-type) Orai1. Unexpectedly, the E106D mutation also changes the pH dependence of ICRAC. Unlike WT ICRAC, E106D-mediated current is not inhibited at low pH, but instead the block of Na? permeation through the E106D Orai1 pore by Ca2? is diminished. These results suggest that Glu1?? inside the CRAC channel pore is involved in co-ordinating the Ca2?-binding site that mediates fast Ca2?-dependent inactivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号