首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   5篇
  2020年   1篇
  2019年   1篇
  2015年   3篇
  2014年   7篇
  2013年   4篇
  2012年   5篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1971年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
41.
ClC-1 is a dimeric, double-pored chloride channel that is present in skeletal muscle. Mutations of this channel can result in the condition myotonia, a muscle disorder involving increased muscle stiffness. It has been shown that the dominant form of myotonia often results from mutations that affect the so-called slow, or common, gating process of the ClC-1 channel. Mutations causing dominant myotonia are seen to cluster at the interface of the ClC-1 channel monomers. This study has investigated the role of the H, I, P, and Q helices, which lie on this interface, as well as the G helix, which is situated immediately behind the H and I helices, on ClC-1 gating. 11 mutant ClC-1 channels (T268M, C277S, C278S, S289A, T310M, S312A, V321S, T539A, S541A, M559T, and S572V) were produced using site-directed mutagenesis, and gating properties of these channels were investigated using electrophysiological techniques. Six of the seven mutations in G, H, and I, and two of the four mutations in P and Q, caused shifts of the ClC-1 open probability. In the majority of cases this was due to alterations in the common gating process, with only three of the mutants displaying any change in fast gating. Many of the mutant channels also showed alterations in the kinetics of the common gating process, particularly at positive potentials. The changes observed in common gating were caused by changes in the opening rate (e.g. T310M), the closing rate (e.g. C277S), or both rates. These results indicate that mutations in the helices forming the dimer interface are able to alter the ClC-1 common gating process by changing the energy of the open and/or closed channel states, and hence altering transition rates between these states.  相似文献   
42.
Hepatocytes are highly differentiated and spatially polarised cells which conduct a wide range of functions, including intermediary metabolism, protein synthesis and secretion, and the synthesis, transport and secretion of bile acids. Changes in the concentrations of Ca(2+) in the cytoplasmic space, endoplasmic reticulum (ER), mitochondria, and other intracellular organelles make an essential contribution to the regulation of these hepatocyte functions. While not yet fully understood, the spatial and temporal parameters of the cytoplasmic Ca(2+) signals and the entry of Ca(2+) through Ca(2+)-permeable channels in the plasma membrane are critical to the regulation by Ca(2+) of hepatocyte function. Ca(2+) entry across the hepatocyte plasma membrane has been studied in hepatocytes in situ, in isolated hepatocytes and in liver cell lines. The types of Ca(2+)-permeable channels identified are store-operated, ligand-gated, receptor-activated and stretch-activated channels, and these may vary depending on the animal species studied. Rat liver cell store-operated Ca(2+) channels (SOCs) have a high selectivity for Ca(2+) and characteristics similar to those of the Ca(2+) release activated Ca(2+) channels in lymphocytes and mast cells. Liver cell SOCs are activated by a decrease in Ca(2+) in a sub-region of the ER enriched in type1 IP(3) receptors. Activation requires stromal interaction molecule type 1 (STIM1), and G(i2alpha,) F-actin and PLCgamma1 as facilitatory proteins. P(2x) purinergic channels are the only ligand-gated Ca(2+)-permeable channels in the liver cell membrane identified so far. Several types of receptor-activated Ca(2+) channels have been identified, and some partially characterised. It is likely that TRP (transient receptor potential) polypeptides, which can form Ca(2+)- and Na(+)-permeable channels, comprise many hepatocyte receptor-activated Ca(2+)-permeable channels. A number of TRP proteins have been detected in hepatocytes and in liver cell lines. Further experiments are required to characterise the receptor-activated Ca(2+) permeable channels more fully, and to determine the molecular nature, mechanisms of activation, and precise physiological functions of each of the different hepatocyte plasma membrane Ca(2+) permeable channels.  相似文献   
43.
Nitric oxide (NO) signaling is important for the regulation of hematopoiesis. However, the role of individual NO synthase (NOS) isoforms is unclear. Our results indicate that the neuronal NOS isoform (nNOS) regulates hematopoiesis in vitro and in vivo. nNOS is expressed in adult bone marrow and fetal liver and is enriched in stromal cells. There is a strong correlation between expression of nNOS in a panel of stromal cell lines established from bone marrow and fetal liver and the ability of these cell lines to support hematopoietic stem cells; furthermore, NO donor can further increase this ability. The number of colonies generated in vitro from the bone marrow and spleen of nNOS-null mutants is increased relative to wild-type or inducible- or endothelial NOS knockout mice. These results describe a new role for nNOS beyond its action in the brain and muscle and suggest a model where nNOS, expressed in stromal cells, produces NO which acts as a paracrine regulator of hematopoietic stem cells.  相似文献   
44.
Neural progenitor cells have been proposed as a therapy for central nervous system disorders, including neurodegenerative diseases and trauma injuries, however their accessibility is a major limitation. We recently isolated Tuj1 + cells from skeletal muscle culture of Nestin–GFP transgenic mice however whether they form functional neurons in the brain is not yet known. Additionally, their isolation from nontransgenic species and identification of their ancestors is unknown. This gap of knowledge precludes us from studying their role as a valuable alternative to neural progenitors. Here, we identified two pericyte subtypes, type-1 and type-2, using a double transgenic Nestin–GFP/NG2–DsRed mouse and demonstrated that Nestin–GFP +/Tuj1 + cells derive from type-2 Nestin–GFP +/NG2–DsRed +/CD146 + pericytes located in the skeletal muscle interstitium. These cells are bipotential as they generate either Tuj1 + cells when cultured with muscle cells or become “classical” α-SMA + pericytes when cultured alone. In contrast, type-1 Nestin–GFP ?/NG2–DsRed +/CD146 + pericytes generate α-SMA + pericytes but not Tuj1 + cells. Interestingly, type-2 pericyte derived Tuj1 + cells retain some pericytic markers (CD146 +/PDGFRβ +/NG2 +). Given the potential application of Nestin–GFP +/NG2–DsRed +/Tuj1 + cells for cell therapy, we found a surface marker, the nerve growth factor receptor, which is expressed exclusively in these cells and can be used to identify and isolate them from mixed cell populations in nontransgenic species for clinical purposes.  相似文献   
45.
46.
The presence of keratin intermediate filaments is a characteristic of trophoblast differentiation. Meantime, their intracellular localization in the functionally different subtypes of placental trophoblast is poorly investigated in rodent, whereas their placentae are being broadly investigated in recent years as a model of the feto-maternal interaction. The purpose was to study the intracellular distribution of cytokeratin filaments in correlation with glycogen deposits, both being important constituents of the trophoblast cells in rat placenta. Different rat trophoblast cell populations exhibited different patterns of cytokeratin immunolocalization. The most intensive immunostaining was observed in the highly endopolyploid SGTCs (secondary giant trophoblast cells) at the border with decidua basalis. The most prominent cytokeratin-positive threads were found at the periphery of cytoplasm and in the extensive system of cytoplasmic sprouts by which the SGTC connect each other. Similar cytokeratin intensity and distribution was detected in the TSC (trabecular spongiotrophoblast cells) of the junctional zone of placenta that line the lacunae with the maternal blood. Clusters of highly proliferative pre-glycogen as well as glycogen cells showed some weaker cytokeratin signals mostly in the perinuclear and peripheral zones of cytoplasm. At the 11.5th to the 13.5th day of gestation, the interstitial and endovascular invasive endopolyploid TGTCs (tertiary giant trophoblast cells) prove the intensive cytokeratin staining throughout the cytoplasm and its sprouts. Meantime, the TGTCs were glycogen negative. By contrast, glycogen was heavily accumulated in the glycogen cells that belong both to the junctional zone of placenta and the cuff of the central arterial channel underlying the monolayer of endovascularly invading TGTCs. Thus, the TGTCs that are first to penetrate into the depth of the uterine wall do not contain glycogen but are accompanied by the glycogen-rich cells. The SGTC also contained the prominent deposits of glycogen at the periphery of cytoplasm and in the cytoplasmic sprouts. At the 16th day of gestation, an extensive interstitial invasion of the cytokeratin-positive glycogen trophoblast cells from the junctional zone was observed. The patterns of cytokeratin and glycogen intracellular localization are specific for each subtype of the rat trophoblast; that is, most probably, accounted for by the functional diversity of different trophoblast populations, i.e. patterns of invasion/phagocytosis and their involvement in a barrier at the feto-maternal interface.  相似文献   
47.

Background

Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority.

Methodology/Principal Findings

The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51) for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar KD values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC50 <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC50 of 17 nM and was trypanocidal at 40 nM.

Conclusions/Significance

The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5), fatty acid ω-hydroxylases (CYP4), 17α-hydroxylase/17,20-lyase (CYP17) and aromatase (CYP19). Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical companies against these targets could also be explored for efficacy against T. cruzi.  相似文献   
48.
The CSF-1 receptor (CSF-1R) regulates CNS microglial development. However, the localization and developmental roles of this receptor and its ligands, IL-34 and CSF-1, in the brain are poorly understood. Here we show that compared to wild type mice, CSF-1R-deficient (Csf1r-/-) mice have smaller brains of greater mass. They further exhibit an expansion of lateral ventricle size, an atrophy of the olfactory bulb and a failure of midline crossing of callosal axons. In brain, IL-34 exhibited a broader regional expression than CSF-1, mostly without overlap. Expression of IL-34, CSF-1 and the CSF-1R were maximal during early postnatal development. However, in contrast to the expression of its ligands, CSF-1R expression was very low in adult brain. Postnatal neocortical expression showed that CSF-1 was expressed in layer VI, whereas IL-34 was expressed in the meninges and layers II-V. The broader expression of IL-34 is consistent with its previously implicated role in microglial development. The differential expression of CSF-1R ligands, with respect to CSF-1R expression, could reflect their CSF-1R-independent signaling. Csf1r-/- mice displayed increased proliferation and apoptosis of neocortical progenitors and reduced differentiation of specific excitatory neuronal subtypes. Indeed, addition of CSF-1 or IL-34 to microglia-free, CSF-1R-expressing dorsal forebrain clonal cultures, suppressed progenitor self-renewal and enhanced neuronal differentiation. Consistent with a neural developmental role for the CSF-1R, ablation of the Csf1r gene in Nestin-positive neural progenitors led to a smaller brain size, an expanded neural progenitor pool and elevated cellular apoptosis in cortical forebrain. Thus our results also indicate novel roles for the CSF-1R in the regulation of corticogenesis.  相似文献   
49.
Nitric oxide signaling is crucial for effecting long lasting changes in cells, including gene expression, cell cycle arrest, apoptosis, and differentiation. We have determined the temporal order of gene activation induced by NO in mammalian cells and have examined the signaling pathways that mediate the action of NO. Using microarrays to study the kinetics of gene activation by NO, we have determined that NO induces three distinct waves of gene activity. The first wave is induced within 30 min of exposure to NO and represents the primary gene targets of NO. It is followed by subsequent waves of gene activity that may reflect further cascades of NO-induced gene expression. We verified our results using quantitative real time PCR and further validated our conclusions about the effects of NO by using cytokines to induce endogenous NO production. We next applied pharmacological and genetic approaches to determine the signaling pathways that are used by NO to regulate gene expression. We used inhibitors of particular signaling pathways, as well as cells from animals with a deleted p53 gene, to define groups of genes that require phosphatidylinositol 3-kinase, protein kinase C, NF-kappaB, p53, or combinations thereof for activation by NO. Our results demonstrate that NO utilizes several independent signaling pathways to induce gene expression.  相似文献   
50.
In an analysis of allozyme genes in three pine and one spruce species distributed in Eurasia, 45 of 87 loci were mapped. Four linkage groups inPinus sylvestris andPicea abies, three inPinus pallasiana, and two inPinus pumila were determined. The order and the locations of homologous genes in the linkage groups in the different species were similar. The data suggest that during the separate development of thePinus andPicea genera that has lasted for millions of years, there was not any large inversion, translocation, or other significant chromosomal change, at least in the gene blocks analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号