全文获取类型
收费全文 | 65篇 |
免费 | 5篇 |
专业分类
70篇 |
出版年
2020年 | 1篇 |
2019年 | 1篇 |
2015年 | 3篇 |
2014年 | 7篇 |
2013年 | 4篇 |
2012年 | 5篇 |
2011年 | 7篇 |
2010年 | 2篇 |
2009年 | 1篇 |
2008年 | 5篇 |
2007年 | 3篇 |
2006年 | 1篇 |
2005年 | 4篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2002年 | 3篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1971年 | 1篇 |
1967年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
Amy R. Reilein Irina S. Tint Natalia I. Peunova Grigori N. Enikolopov Vladimir I. Gelfand 《The Journal of cell biology》1998,142(3):803-813
We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A. 相似文献
2.
The flavivirus NS3 protein plays an important role in the cleavage and processing of the viral polyprotein and in the synthesis of the viral RNA. NS3 recruits NS2B and NS5 proteins to form complexes possessing protease and replicase activities through protease and nucleoside triphosphatase/helicase domains. We have found that NS3 also induces apoptosis. Expression of the Langat (LGT) virus NS3 protein resulted in a cleavage of cellular DNA and reduced the viability of cells. Coexpression of NS3 with apoptotic inhibitors (CrmA and P35) and addition of caspase peptide substrates (Z-VAD-FMK and Z-IETD-FMK) to NS3-transfected cells blocked NS3-induced apoptosis. In cotransfection experiments, NS3 bound to caspase-8 and enhanced caspase-8-mediated apoptosis. NS3 and caspase-8 colocalized in the cytoplasm of transfected cells. Deletion analysis demonstrated that at least two regions of NS3 contribute to its apoptotic activities. The protease and helicase domains are each able to bind to caspase-8, while the protease domain alone induces apoptosis. The protease domain and tetrahelix region of the helicase domain are required for NS3 to augment caspase-8-mediated apoptosis. Thus, the LGT virus NS3 protein is a multifunctional protein that binds to caspase-8 and induces apoptosis. 相似文献
3.
4.
Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow 下载免费PDF全文
Woo‐Kie Min Won Woo Lee Jeong Eun Lee Haruhiko Akiyama Herbert Herzog Grigori N Enikolopov Edward H Schuchman Jae‐sung Bae 《The EMBO journal》2015,34(12):1648-1660
Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY‐deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy‐induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy‐induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide. 相似文献
5.
Background
Therapy for neural lesions or degenerative diseases relies mainly on finding transplantable active precursor cells. Identifying them in peripheral tissues accessible for biopsy, outside the central nervous system, would circumvent the serious immunological and ethical concerns impeding cell therapy.Methodology/Principal Findings
In this study, we isolated neural progenitor cells in cultured adult skeletal muscle from transgenic mice in which nestin regulatory elements control GFP expression. These cells also expressed the early neural marker Tuj1 and light and heavy neurofilament but not S100β, indicating that they express typical neural but not Schwann cell markers. GFP+/Tuj1+ cells were also negative for the endothelial and pericyte markers CD31 and α-smooth muscle actin, respectively. We established their a) functional response to glutamate in patch-clamp recordings; b) interstitial mesenchymal origin; c) replicative capacity; and d) the environment necessary for their survival after fluorescence-activated cell sorting.Conclusions/Significance
We propose that the decline in nestin-GFP expression in muscle progenitor cells and its persistence in neural precursor cells in muscle cultures provide an invaluable tool for isolating a population of predifferentiated neural cells with therapeutic potential. 相似文献6.
Human ClC-1 (skeletal muscle Cl- channel) has a long cytoplasmic C-tail (carboxyl tail), containing two CBS (cystathionine beta-synthase) domains, which is very important for channel function. We have now investigated its significance further, using deletion and alanine-scanning mutagenesis, split channels, GST (glutathione transferase)-pull-down and whole-cell patch-clamping. In tagged split-channel experiments, we have demonstrated strong binding between an N-terminal membrane-resident fragment (terminating mid-C-tail at Ser(720) and containing CBS1) and its complement (containing CBS2). This interaction is not affected by deletion of some sequences, suggested previously to be important, particularly in channel gating. Contact between CBS1 and CBS2, however, may make a major contribution to assembly of functional channels from such co-expressed complements, although the possibility that C-tail fragments could, in addition, bind to other parts of the membrane-resident component has not been eliminated. We now show such an interaction between a membrane-resident component terminating at Ser(720) (but with CBS1 deleted) and a complete C-tail beginning at Leu(598). Channel function is rescued in patch-clamped HEK-293T (human embryonic kidney) cells co-expressing these same fragments. From our own results and those of others, we conclude that the CBS1-CBS2 interaction is not sufficient, in itself, for channel assembly, but rather that this might normally assist in bringing some part of the CBS2/C-tail region into appropriate proximity with the membrane-resident portion of the protein. Previously conflicting and anomalous results can now be explained by an hypothesis that, for split channels to be functional, at least one membrane-resident component must include a plasma membrane trafficking signal between Leu(665) and Lys(680). 相似文献
7.
Sean McCann Onour Moeri Tanya Jones Catherine Scott Grigori Khaskin Regine Gries Sean O'Donnell Gerhard Gries 《PloS one》2013,8(12)
Red-throated Caracaras Ibycter americanus (Falconidae) are specialist predators of social wasps in the Neotropics. It had been proposed that these caracaras possess chemical repellents that allow them to take the brood of wasp nests without being attacked by worker wasps. To determine how caracaras exploit nests of social wasps and whether chemical repellents facilitate predation, we: (1) video recorded the birds attacking wasp nests; (2) analyzed surface extracts of the birds'' faces, feet, and feathers for potential chemical repellents; and (3) inflicted mechanical damage on wasp nests to determine the defensive behavior of wasps in response to varying levels of disturbance. During caracara predation events, two species of large-bodied wasps mounted stinging attacks on caracaras, whereas three smaller-bodied wasp species did not. The “hit-and-run” predation tactic of caracaras when they attacked nests of large and aggressive wasps reduced the risk of getting stung. Our data reveal that the predation strategy of caracaras is based on mechanical disturbance of, and damage to, target wasp nests. Caracara attacks and severe experimental disturbance of nests invariably caused wasps to abscond (abandon their nests). Two compounds in caracara foot extracts [sulcatone and iridodial] elicited electrophysiological responses from wasp antennae, and were also present in defensive secretions of sympatric arboreal-nesting Azteca ants. These compounds appear not to be wasp repellents but to be acquired coincidentally by caracaras when they perch on trees inhabited with Azteca ants. We conclude that caracara predation success does not depend on wasp repellents but relies on the absconding response that is typical of swarm-founding polistine wasps. Our study highlights the potential importance of vertebrate predators in the ecology and evolution of social wasps. 相似文献
8.
Yan G. Zorbas Vassili G. Andreyev Grigori E. Veremtsov Youri N. Yaroshenko 《Biological trace element research》1997,58(1-2):103-116
The objective of this investigation was to determine whether a plentiful magnesium (Mg2+) supplementation might be used to normalize or prevent Mg deficiency. This is manifested by increased rather than decreased serum Mg2+ concentration as is observed during prolonged hospitalization, which is developed during prolonged hypokinesia (HK) (decreased motor activity). Eighty male Wistar rats with an initial body weight of 370–390 g were used to perform the studies: They were equally divided into four groups:
- Unsupplemented control animals (UCA);
- Supplemented control animals (SCA);
- Unsupplemented hypokinetic animals (UHA); and
- Supplemented hypokinetic animals (SHA).
9.
Makhaeva GF Iankovskaia VL Kovaleva NV Fetisov VI Malygin VV Torgasheva NA Khaskin BA 《Bioorganicheskaia khimiia》1999,25(1):8-13
The interaction of potential pesticides, O,O-dialkyl S-ethoxycarbonylbromomethylthiophosphates (RO)2P(O)SCH(Br)COOC2H5 (R = Et, i-Pr, n-Pr, n-Bu, n-Am, or n-Hx) with the esterases of warm-blooded animals [acetylcholinesterase (ACE), butyryl cholinesterase (BCE), and carboxyl esterase (CE)] was studied. The acute toxicities of these compounds for mice were determined. All the compounds were non-hydrolyzable by CE and capable of irreversible inhibition of all these esterases with ki (M-1 min-1) of 1.2 x 10(5)-6 x 10(6), 2.0 x 10(6)-1.5 x 10(8), and 2.0 x 10(8), respectively. By using multiple regression analysis, we found that the steric factor plays a significant role in the inhibition of ACE, with the steric hindrances manifesting themselves even at the sorption stage. On the other hand, hydrophobic interactions predominate in the case of BCE, while steric properties of its substituents exert a markedly weaker effect and manifest themselves at the phosphorylation stage. We suggested the presence of an electrophilic region in the active site of ACE, which can interact with the ethoxycarbonyl group of the thiophosphates under study. The decrease in toxicities and the affinities to BCE and CE were found to correlate with an increase in the length of n-alkyl substituents of the compounds studied. This suggests that the unspecific esterases play a significant role as a buffer system in the exhibition of toxic effects by the thiophosphates under consideration. 相似文献
10.
Scheinker V Fiore G Di Cristo C Di Cosmo A d'Ischia M Enikolopov G Palumbo A 《Biochemical and biophysical research communications》2005,338(2):1204-1215
Nitric oxide (NO) signaling is involved in numerous physiological processes in mollusks, e.g., learning and memory, feeding behavior, neural development, and defence response. We report the first molecular cloning of NOS mRNA from a cephalopod, the cuttlefish Sepia officinalis (SoNOS). SoNOS was cloned using a strategy that involves hybridization of degenerate PCR primers to highly conserved NOS regions, combined with RACE procedure. Two splicing variants of SoNOS, differing by 18 nucleotides, were found in the nervous system and the ink gland of Sepia. In situ hybridization shows that SoNOS is expressed in the immature and mature cells of the ink gland and in the regions of the nervous system that are related to the ink defence system. 相似文献