全文获取类型
收费全文 | 117篇 |
免费 | 12篇 |
专业分类
129篇 |
出版年
2021年 | 1篇 |
2020年 | 1篇 |
2018年 | 3篇 |
2017年 | 1篇 |
2016年 | 4篇 |
2015年 | 12篇 |
2014年 | 2篇 |
2013年 | 7篇 |
2012年 | 13篇 |
2011年 | 10篇 |
2010年 | 9篇 |
2009年 | 5篇 |
2008年 | 5篇 |
2007年 | 3篇 |
2006年 | 9篇 |
2005年 | 8篇 |
2004年 | 4篇 |
2003年 | 7篇 |
2002年 | 5篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1996年 | 2篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1974年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有129条查询结果,搜索用时 15 毫秒
91.
Wim Schepers Griet Van Zeebroeck Martijn Pinkse Peter Verhaert Johan M. Thevelein 《The Journal of biological chemistry》2012,287(53):44130-44142
The readdition of an essential nutrient to starved, fermenting cells of the yeast Saccharomyces cerevisiae triggers rapid activation of the protein kinase A (PKA) pathway. Trehalase is activated 5–10-fold within minutes and has been used as a convenient reporter for rapid activation of PKA in vivo. Although trehalase can be phosphorylated and activated by PKA in vitro, demonstration of phosphorylation during nutrient activation in vivo has been lacking. We now show, using phosphospecific antibodies, that glucose and nitrogen activation of trehalase in vivo is associated with phosphorylation of Ser21 and Ser83. Unexpectedly, mutants with reduced PKA activity show constitutive phosphorylation despite reduced trehalase activation. The same phenotype was observed upon deletion of the catalytic subunits of yeast protein phosphatase 2A, suggesting that lower PKA activity causes reduced trehalase dephosphorylation. Hence, phosphorylation of trehalase in vivo is not sufficient for activation. Deletion of the inhibitor Dcs1 causes constitutive trehalase activation and phosphorylation. It also enhances binding of trehalase to the 14-3-3 proteins Bmh1 and Bmh2, suggesting that Dcs1 inhibits by preventing 14-3-3 binding. Deletion of Bmh1 and Bmh2 eliminates both trehalase activation and phosphorylation. Our results reveal that trehalase activation in vivo is associated with phosphorylation of typical PKA sites and thus establish the enzyme as a reliable read-out for nutrient activation of PKA in vivo. 相似文献
92.
Ana Cristina Sarmento Henrique Lopes Cláudia S. Oliveira Rui Vitorino Bart Samyn Kjell Sergeant Griet Debyser Jozef Van Beeumen Pedro Domingues Francisco Amado Euclides Pires M. Rosário M. Domingues Marlene T. Barros 《Planta》2009,230(2):429-439
Aspartic proteinases (AP) play major roles in physiologic and pathologic scenarios in a wide range of organisms from vertebrates
to plants or viruses. The present work deals with the purification and characterisation of four new APs from the cardoon Cynara cardunculus L., bringing the number of APs that have been isolated, purified and biochemically characterised from this organism to nine.
This is, to our knowledge, one of the highest number of APs purified from a single organism, consistent with a specific and
important biological function of these protein within C. cardunculus. These enzymes, cardosins E, F, G and H, are dimeric, glycosylated, pepstatin-sensitive APs, active at acidic pH, with a
maximum activity around pH 4.3. Their primary structures were partially determined by N- and C-terminal sequence analysis,
peptide mass fingerprint analysis on a MALDI-TOF/TOF instrument and by LC–MS/MS analysis on a Q-TRAP instrument. All four
enzymes are present on C. cardunculus L. pistils, along with cyprosins and cardosins A and B. Their micro-heterogeneity was detected by 2D-electrophoresis and
mass spectrometry. The enzymes resemble cardosin A more than they resemble cardosin B or cyprosin, with cardosin E and cardosin
G being more active than cardosin A, towards the synthetic peptide KPAEFF(NO2)AL. The specificity of these enzymes was investigated and it is shown that cardosin E, although closely related to cardosin
A, exhibits different specificity.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
93.
94.
Xiaoyun Yang Katrien Forier Lennert Steukers Sandra Van Vlierberghe Peter Dubruel Kevin Braeckmans Sarah Glorieux Hans J. Nauwynck 《PloS one》2012,7(12)
Pseudorabies virus (PRV) initially replicates in the porcine upper respiratory tract. It easily invades the mucosae and submucosae for subsequent spread throughout the body via blood vessels and nervous system. In this context, PRV developed ingenious processes to overcome different barriers such as epithelial cells and the basement membrane. Another important but often overlooked barrier is the substantial mucus layer which coats the mucosae. However, little is known about how PRV particles interact with porcine respiratory mucus. We therefore measured the barrier properties of porcine tracheal respiratory mucus, and investigated the mobility of nanoparticles including PRV in this mucus. We developed an in vitro model utilizing single particle tracking microscopy. Firstly, the mucus pore size was evaluated with polyethylene glycol coupled (PEGylated) nanoparticles and atomic force microscope. Secondly, the mobility of PRV in porcine tracheal respiratory mucus was examined and compared with that of negative, positive and PEGylated nanoparticles. The pore size of porcine tracheal respiratory mucus ranged from 80 to 1500 nm, with an average diameter of 455±240 nm. PRV (zeta potential: −31.8±1.5 mV) experienced a severe obstruction in porcine tracheal respiratory mucus, diffusing 59-fold more slowly than in water. Similarly, the highly negatively (−49.8±0.6 mV) and positively (36.7±1.1 mV) charged nanoparticles were significantly trapped. In contrast, the nearly neutral, hydrophilic PEGylated nanoparticles (−9.6±0.8 mV) diffused rapidly, with the majority of particles moving 50-fold faster than PRV. The mobility of the particles measured was found to be related but not correlated to their surface charge. Furthermore, PEGylated PRV (-13.8±0.9 mV) was observed to diffuse 13-fold faster than native PRV. These findings clearly show that the mobility of PRV was significantly hindered in porcine tracheal respiratory mucus, and that the obstruction of PRV was due to complex mucoadhesive interactions including charge interactions rather than size exclusion. 相似文献
95.
The yeast Gap1 transceptor mediates amino acid activation of the protein kinase A pathway and undergoes endocytic internalization following amino acid transport. We identified three specific γ-glutamyl dipeptides that cause persistent cyclic AMP-independent activation of protein kinase A, prevent Gap1 vacuolar sorting and cause Gap1 accumulation in endosomes. To our knowledge, these are the first examples of persistent agonists of a transceptor. In yeast mutants blocked in multivesicular body sorting, L-citrulline mimicked persistent signaling, further supporting that the internalized Gap1 transceptor keeps signaling. Unexpectedly, these dipeptides were transported by Gap1 and not by the regular dipeptide transporters. Their uptake was unusually sensitive to external pH and caused transient intracellular acidification. High external pH, NHA1 deletion or V-ATPase inhibition overcame the vacuolar sorting defect. Hence, this work has identified specific dipeptides that cause enhanced proton influx through the Gap1 symporter, resulting in its defective vacuolar sorting, and independently transform it into a persistently signaling transceptor. 相似文献
96.
MA Arias GA Van Roey JS Tregoning M Moutaftsi RN Coler HP Windish SG Reed D Carter RJ Shattock 《PloS one》2012,7(7):e41144
Successful vaccine development against HIV will likely require the induction of strong, long-lasting humoral and cellular immune responses in both the systemic and mucosal compartments. Based on the known immunological linkage between the upper-respiratory and urogenital tracts, we explored the potential of nasal adjuvants to boost immunization for the induction of vaginal and systemic immune responses to gp140. Mice were immunized intranasally with HIV gp140 together with micellar and emulsion formulations of a synthetic TLR4 agonist, Glucopyranosyl Lipid Adjuvant (GLA) and responses were compared to R848, a TLR7/8 agonist, or chitosan, a non TLR adjuvant. GLA and chitosan but not R848 greatly enhanced serum immunoglobulin levels when compared to antigen alone. Both GLA and chitosan induced high IgG and IgA titers in nasal and vaginal lavage and feces. The high IgA and IgG titers in vaginal lavage were associated with high numbers of gp140-specific antibody secreting cells in the genital tract. Whilst both GLA and chitosan induced T cell responses to immunization, GLA induced a stronger Th17 response and chitosan induced a more Th2 skewed response. Our results show that GLA is a highly potent intranasal adjuvant greatly enhancing humoral and cellular immune responses, both systemically and mucosally. 相似文献
97.
R Beck N Dejeans C Glorieux M Creton E Delaive M Dieu M Raes P Levêque B Gallez M Depuydt JF Collet PB Calderon J Verrax 《PloS one》2012,7(7):e40795
Hsp90 is an essential chaperone that is necessary for the folding, stability and activity of numerous proteins. In this study, we demonstrate that free radicals formed during oxidative stress conditions can cleave Hsp90. This cleavage occurs through a Fenton reaction which requires the presence of redox-active iron. As a result of the cleavage, we observed a disruption of the chaperoning function of Hsp90 and the degradation of its client proteins, for example, Bcr-Abl, RIP, c-Raf, NEMO and hTert. Formation of Hsp90 protein radicals on exposure to oxidative stress was confirmed by immuno-spin trapping. Using a proteomic analysis, we determined that the cleavage occurs in a conserved motif of the N-terminal nucleotide binding site, between Ile-126 and Gly-127 in Hsp90β, and between Ile-131 and Gly-132 in Hsp90α. Given the importance of Hsp90 in diverse biological functions, these findings shed new light on how oxidative stress can affect cellular homeostasis. 相似文献
98.
As plasminogen activator inhibitor-1 (PAI-1), the physiological inhibitor of tissue-type plasminogen activator, is considered to be an important risk factor in several (patho)physiological conditions, many research activities focus on attempts to inhibit this serpin. The approach illustrated in the current study focuses on elucidating important interaction sites allowing the inhibition of PAI-1. Since monoclonal antibodies are in most cases not ideal for therapeutic use, the question of whether smaller molecules exert comparable effects is a hot issue. To answer this question, Cys residues were introduced in PAI-1 at positions previously identified as determining the epitope of a PAI-1-inhibiting antibody, MA-8H9D4, resulting in PAI-1-R300C, PAI-1-Q303C, and PAI-1-D305C. Subsequently, low molecular mass sulfhydryl-specific reagents (i.e. BODIPY 530/550 IA (molecular mass 626 Da) and BODIPY FL C(1)-IA (molecular mass 417 Da)) were allowed to react covalently with the cysteine. The functional distribution (inhibitory versus substrate) toward tissue-type plasminogen activator was determined for the labeled and the unlabeled samples. Labeling at position 300 leads to a 1.7- and 2.2-fold increase in SI value for BODIPY 530/550 IA and BODIPY FL C(1)-IA, respectively. Labeling at position 303 results in a 3.3- and 1.9-fold increase of the SI value for the large and the small label, respectively. At position 305, the SI values are 3.1-fold increased for both labels. The effect (on SI and on serpin activity) of the manipulations at these positions is in good agreement with the effect exerted by MA-8H9D4. In conclusion, our study provides proof of concept for the proposed approach in evaluating whether targeting a functional epitope with a small synthetic compound may be a feasible strategy in rational drug design. 相似文献
99.
Smads and chromatin modulation 总被引:2,自引:0,他引:2
van Grunsven LA Verstappen G Huylebroeck D Verschueren K 《Cytokine & growth factor reviews》2005,16(4-5):495-512
100.