首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   6篇
  49篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2000年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
  1949年   1篇
排序方式: 共有49条查询结果,搜索用时 0 毫秒
41.
Biological nitrogen fixation is an important source of fixed nitrogen for the biosphere. Microorganisms catalyse biological nitrogen fixation with the enzyme nitrogenase, which has been highly conserved through evolution. Cloning and sequencing of one of the nitrogenase structural genes, nifH, has provided a large, rapidly expanding database of sequences from diverse terrestrial and aquatic environments. Comparison of nifH phylogenies to ribosomal RNA phylogenies from cultivated microorganisms shows little conclusive evidence of lateral gene transfer. Sequence diversity far outstrips representation by cultivated representatives. The phylogeny of nitrogenase includes branches that represent phylotypic groupings based on ribosomal RNA phylogeny, but also includes paralogous clades including the alternative, non-molybdenum, non-vanadium containing nitrogenases. Only a few alternative or archaeal nitrogenase sequences have as yet been obtained from the environment. Extensive analysis of the distribution of nifH phylotypes among habitats indicates that there are characteristic patterns of nitrogen fixing microorganisms in termite guts, sediment and soil environments, estuaries and salt marshes, and oligotrophic oceans. The distribution of nitrogen-fixing microorganisms, although not entirely dictated by the nitrogen availability in the environment, is non-random and can be predicted on the basis of habitat characteristics. The ability to assay for gene expression and investigate genome arrangements provides the promise of new tools for interrogating natural populations of diazotrophs. The broad analysis of nitrogenase genes provides a basis for developing molecular assays and bioinformatics approaches for the study of nitrogen fixation in the environment.  相似文献   
42.
While the potential for intermittent hydrostatic pressure to promote cartilaginous matrix synthesis is well established, its potential to influence chondroinduction remains poorly understood. This study examined the effects of relatively short- and long-duration cyclic hydrostatic compression on the chondroinduction of C3H/10T1/2 murine embryonic fibroblasts by recombinant human bone morphogenetic protein-2 (rhBMP-2). Cells were seeded at high density into round bottom wells of a 96-well plate and supplemented with 25 ng/ml rhBMP-2. Experimental cultures were subjected to either 1,800 cycles/day or 7,200 cycles/day of 1 Hz sinusoidal hydrostatic compression to 5 MPa (applied 10 min on/10 min off) for 3 days. Non-pressurized control and experimental cultures were maintained in static culture for an additional 5 days. Cultures were then analyzed for alcian blue staining intensity, DNA and sulfated glycosaminoglycan (sGAG) content, and for the rate of collagen synthesis. Whereas cultures subjected to 1,800 pressure cycles exhibited no significant differences (statistical or qualitative) compared to controls, those subjected to 7,200 cycles stained more intensely with alcian blue, contained nearly twice as much sGAG, and displayed twice the rate of collagen synthesis as non-pressurized controls. This study demonstrates the potential for cyclic hydrostatic compression to stimulate chondrogenic differentiation of the C3H/10T1/2 cell line in a duration-dependent manner.  相似文献   
43.
There is increasing evidence to suggest that late chronotypes are at increased risk for depression. The putative psychological mechanisms underpinning this risk, however, have not been fully explored. The aim of the present study was to examine whether, similar to acutely depressed patients and other “at risk” groups, late chronotype individuals display biases in tasks assaying emotional face recognition, emotional categorisation, recognition and recall and attention. Late chronotype was associated with increased recognition of sad facial expressions, greater recall and reduced latency to correctly recognise previously presented negative personality trait words and reduced allocation of attentional resources to happy faces. The current results indicate that certain negative biases in emotional processing are present in late chronotypes and may, in part, mediate the vulnerability of these individuals to depression. Prospective studies are needed to establish whether the cognitive vulnerabilities reported here predict subsequent depression.  相似文献   
44.
45.
Viruses are abundant in the ocean and a major driving force in plankton ecology and evolution. It has been assumed that most of the viruses in seawater contain DNA and infect bacteria, but RNA-containing viruses in the ocean, which almost exclusively infect eukaryotes, have never been quantified. We compared the total mass of RNA and DNA in the viral fraction harvested from seawater and using data on the mass of nucleic acid per RNA- or DNA-containing virion, estimated the abundances of each. Our data suggest that the abundance of RNA viruses rivaled or exceeded that of DNA viruses in samples of coastal seawater. The dominant RNA viruses in the samples were marine picorna-like viruses, which have small genomes and are at or below the detection limit of common fluorescence-based counting methods. If our results are typical, this means that counts of viruses and the rate measurements that depend on them, such as viral production, are significantly underestimated by current practices. As these RNA viruses infect eukaryotes, our data imply that protists contribute more to marine viral dynamics than one might expect based on their relatively low abundance. This conclusion is a departure from the prevailing view of viruses in the ocean, but is consistent with earlier theoretical predictions.  相似文献   
46.
Anodic aluminum oxide (AAO) filters have high porosity and can be manufactured with a pore size that is small enough to quantitatively capture viruses. These properties make the filters potentially useful for harvesting total microbial communities from water samples for molecular analyses, but their performance for nucleic acid extraction has not been systematically or quantitatively evaluated. In this study, we characterized the flux of water through commercially produced nanoporous (0.02 μm) AAO filters (Anotop; Whatman) and used isolates (a virus, a bacterium, and a protist) and natural seawater samples to test variables that we expected would influence the efficiency with which nucleic acids are recovered from the filters. Extraction chemistry had a significant effect on DNA yield, and back flushing the filters during extraction was found to improve yields of high-molecular-weight DNA. Using the back-flush protocol, the mass of DNA recovered from microorganisms collected on AAO filters was ≥100% of that extracted from pellets of cells and viruses and 94% ± 9% of that obtained by direct extraction of a liquid bacterial culture. The latter is a minimum estimate of the relative recovery of microbial DNA, since liquid cultures include dissolved nucleic acids that are retained inefficiently by the filter. In conclusion, we demonstrate that nucleic acids can be extracted from microorganisms on AAO filters with an efficiency similar to that achievable by direct extraction of microbes in suspension or in pellets. These filters are therefore a convenient means by which to harvest total microbial communities from multiple aqueous samples in parallel for subsequent molecular analyses.  相似文献   
47.
48.
49.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号