首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   9篇
  国内免费   2篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   6篇
  2013年   4篇
  2012年   14篇
  2011年   15篇
  2010年   10篇
  2009年   4篇
  2008年   10篇
  2007年   8篇
  2006年   15篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   9篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1975年   2篇
  1947年   1篇
排序方式: 共有163条查询结果,搜索用时 961 毫秒
121.
A key question in SARS-CoV-2 infection is why viral loads and patient outcomes vary dramatically across individuals. Because spatial-temporal dynamics of viral spread and immune response are challenging to study in vivo, we developed Spatial Immune Model of Coronavirus (SIMCoV), a scalable computational model that simulates hundreds of millions of lung cells, including respiratory epithelial cells and T cells. SIMCoV replicates viral growth dynamics observed in patients and shows how spatially dispersed infections can lead to increased viral loads. The model also shows how the timing and strength of the T cell response can affect viral persistence, oscillations, and control. By incorporating spatial interactions, SIMCoV provides a parsimonious explanation for the dramatically different viral load trajectories among patients by varying only the number of initial sites of infection and the magnitude and timing of the T cell immune response. When the branching airway structure of the lung is explicitly represented, we find that virus spreads faster than in a 2D layer of epithelial cells, but much more slowly than in an undifferentiated 3D grid or in a well-mixed differential equation model. These results illustrate how realistic, spatially explicit computational models can improve understanding of within-host dynamics of SARS-CoV-2 infection.  相似文献   
122.
123.
Health risks due to exposure to high-linear energy transfer (LET) charged particles remain unclear. The major goal of this study was to confirm and further characterize the acute effects of high-LET radiation ((56)Fe(26)) on erythrocyte, thrombocyte and leukocyte populations in three body compartments after total-body exposure. Adult female C57BL/6 mice were irradiated with total doses of 0, 0.5, 2 and 3 Gy and killed humanely 4 days later. Body and organ masses were determined and blood, spleen and bone marrow leukocytes were evaluated using a hematology analyzer and flow cytometry. Spleen and thymus (but not body, liver and lung) masses were significantly decreased in a dose-dependent manner. In general, red blood cell (RBC) counts and most other RBC parameters were depressed with increasing dose (P < 0.05); the major exception was an increase in cell size at 0.5 Gy. Platelet numbers and volume, total white blood cell counts, and all three major types of leukocytes also decreased (P < 0.05). Lymphocyte populations in blood and spleen exhibited variable degrees of susceptibility to (56)Fe-particle radiation (B > T > NK and T cytotoxic > T helper cells). In the bone marrow, leukocytes with granulocytic, lymphocytic ("dim" and "bright"), and monocytic characteristics exhibited proportional variations at the higher radiation doses in the expression of CD34 and/or Ly-6A/E. The data are discussed in relation to our previous investigations with iron ions, other forms of radiation, and space flight in this same animal model.  相似文献   
124.
There has been some evidence that Beh?et's disease (BD) has a significant autoimmune component but the molecular identity of putative autoantigens has not been well characterized. In the initial analysis of the autoantibody profile in 39 Chinese BD patients, autoantibodies to cellular proteins were uncovered in 23% as determined by immunoblotting. We have now identified one of the major autoantibody specificities using expression cloning. Serum from a BD patient was used as a probe to immunoscreen a λZAP expression cDNA library. Candidate autoantigen cDNAs were characterized by direct nucleotide sequencing and their expressed products were examined for reactivity to the entire panel of BD sera using immunoprecipitation. Reactivity was also examined with normal control sera and disease control sera from patients with lupus and Sj?gren's syndrome. Six independent candidate clones were isolated from the cDNA library screen and were identified as overlapping partial human kinectin cDNAs. The finding that kinectin was an autoantigen was verified in 9 out of 39 (23%) BD patient sera by immunoprecipitation of the in vitro translation products. Sera from controls showed no reactivity. The significance of kinectin as a participant in autoimmune pathogenesis in BD and the potential use of autoantibody to kinectin in serodiagnostics are discussed.  相似文献   
125.
126.
We used Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia, live or heat-killed, isolated from the airways of children with Cystic Fibrosis, to stimulate human neutrophils (PMN) and rat alveolar macrophages (AM) to produce reactive oxygen metabolites in the presence or absence of Curosurf, a natural porcine lung surfactant. We determined: (1) the amount of lipid peroxidation (LPO) as assessed by the amounts of malondialdehyde (MDA) and 4-hydroxyalkenals (4-HNE) using the LPO 586 test kit; (2) the production by AM of superoxide with the nitroblue tetrazolium test and (3) of nitric oxide (NO) with the Griess reaction. Stimulation of PMN or AM increases LPO of Curosurf and cell wall lipids. In both types of phagocytes, B. cepacia induced the highest LPO levels followed by P. aeruginosa and S. maltophilia. PMN, stimulated by live bacteria, induced higher LPO than those stimulated by heat-killed bacteria. B. cepacia stimulated AM to produce more superoxide and NO than did P. aeruginosa and S. maltophilia. The high phagocyte-stimulating ability of B. cepacia and its higher surfactant LPO than those of the other bacteria used in this in vitro study may play a role in vivo in the serious clinical condition known as the "Cepacia syndrome".  相似文献   
127.
Recent studies have demonstrated that the Notch signaling pathway regulates the differentiation of sensory hair cells in the vertebrate inner ear [1] [2] [3] [4] [5] [6] [7] [8] [9]. We have shown previously that in mice homozygous for a targeted null mutation of the Jagged2 (Jag2) gene, which encodes a Notch ligand, supernumerary hair cells differentiate in the cochlea of the inner ear [7]. Other components of the Notch pathway, including the Lunatic fringe (Lfng) gene, are also expressed during differentiation of the inner ear in mice [6] [7] [8] [9] [10]. In contrast to the Jag2 gene, which is expressed in hair cells, the Lfng gene is expressed in non-sensory supporting cells in the mouse cochlea [10]. Here we demonstrate that a mutation in the Lfng gene partially suppresses the effects of the Jag2 mutation on hair cell development. In mice homozygous for targeted mutations of both Jag2 and Lfng, the generation of supernumerary hair cells in the inner hair cell row is suppressed, while supernumerary hair cells in the outer hair cell rows are unaffected. We also demonstrate that supernumerary hair cells are generated in mice heterozygous for a Notch1 mutation. We suggest a model for the action of the Notch signaling pathway in regulating hair cell differentiation in the cochlear sensory epithelium.  相似文献   
128.
129.
Snail family members regulate epithelial‐to‐mesenchymal transition (EMT) during invasion of intestinal tumours, but their role in normal intestinal homeostasis is unknown. Studies in breast and skin epithelia indicate that Snail proteins promote an undifferentiated state. Here, we demonstrate that conditional knockout of Snai1 in the intestinal epithelium results in apoptotic loss of crypt base columnar stem cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snai1 conditional knockout mice also undergo apoptosis when Snai1 is deleted. Conversely, ectopic expression of Snai1 in the intestinal epithelium in vivo results in the expansion of the crypt base columnar cell pool and a decrease in secretory enteroendocrine and Paneth cells. Following conditional deletion of Snai1, the intestinal epithelium fails to produce a proliferative response following radiation‐induced damage indicating a fundamental requirement for Snai1 in epithelial regeneration. These results demonstrate that Snai1 is required for regulation of lineage choice, maintenance of CBC stem cells and regeneration of the intestinal epithelium following damage.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号