首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   6篇
  2021年   2篇
  2020年   1篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   6篇
  2011年   8篇
  2010年   7篇
  2009年   1篇
  2008年   8篇
  2007年   7篇
  2006年   10篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   7篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1975年   2篇
  1947年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
31.
BACKGROUND: Interferons (IFNs) play an important role in host antiviral responses, but viruses, including vaccinia viruses (VV), employ mechanisms to disrupt IFN activities, and these viral mechanisms are often associated with their virulence. Here, we explore an attenuation strategy with a vaccine strain of VV lacking a virus-encoded IFN-gamma receptor homolog (viroceptor). METHODS: To facilitate the monitoring of virus properties, first we constructed a Lister vaccine strain derivative VV-RG expressing optical reporters. Further, we constructed a VV-RG derivative, VV-RG8, which lacks the IFN-gammaR viroceptor (B8R gene product). Replication, immunological and pathogenic properties of the constructed strains were compared. RESULTS: Viruses did not show significant differences in humoral and cellular immune responses of immune-competent mice. Replication of constructed viruses was efficient both in vitro and in vivo, but showed marked difference in kinetics of propagation. In cultured CV-1 epithelial cells, the VV-RG8 strain retained the propagation potential of the parental virus, while, in the C6 glial cells, significant delay was observed in the kinetics of the VV-RG8 replication cycle compared to VV-RG. The pathogenesis of the viruses was tested by survival assay and biodistribution in nude mice. High dose inoculation of nude mice with VV-RG8 caused less pronounced virus dissemination, improved weight gain, and increased survival rate, as compared with the VV-RG strain. CONCLUSIONS: The replication-competent virus VV-RG8 carrying a mutation at the B8R gene is less pathogenic for mice than the parental vaccine virus. We anticipate that step-wise inactivation of VV vaccine genes involved in evasion of host immune response may provide an alternative approach for generation of hyper-attenuated replication-competent vaccines.  相似文献   
32.
33.
The Notch signaling pathway is an evolutionarily conserved signaling mechanism and mutations in its components disrupt cell fate specification and embryonic development in many organisms. To analyze the in vivo role of the Notch3 gene in mice, we created a deletion allele by gene targeting. Embryos homozygous for this mutation developed normally and homozygous mutant adults were viable and fertile. We also examined whether we could detect genetic interactions during early embryogenesis between the Notch3 mutation and a targeted mutation of the Notch1 gene. Double homozygous mutant embryos exhibited defects normally observed in Notch1-deficient embryos, but we detected no obvious synergistic effects in the double mutants. These data demonstrate that the Notch3 gene is not essential for embryonic development or fertility in mice, and does not have a redundant function with the Notch1 gene during early embryogenesis.  相似文献   
34.
T Gridley 《The New biologist》1991,3(11):1025-1034
Recent innovations in mutagenesis techniques for mice have the potential to revolutionize the molecular genetic analysis of mouse development. Insertional mutagenesis by the introduction of exogenous DNA into the mouse germline hs permitted the molecular cloning and analysis of several novel genes important for early embryonic development. Targeted mutagenesis by homologous recombination in embryonic stem cells permits, in theory, the production of mutations in any cloned gene. The complementary information being obtained from these two mutagenesis procedures is shedding new light on the genes important for early mouse development, and the roles these genes play in that process.  相似文献   
35.
The PI3K/AKT signaling pathway has an important regulatory role in cancer cell growth and tumorigenesis. Signal transduction through this pathway requires the assembly and activation of PDK1 and AKT at the plasma membrane. On activation of the pathway, PDK1 and AKT1/2 translocate to the membrane and bind to phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) through interaction with their pleckstrin-homology domains. A biochemical method was developed to measure the kinase activity of PDK1 and AKT1/2, utilizing nickel-chelating coated lipid vesicles as a way to mimic the membrane environment. The presence of these vesicles in the reaction buffer enhanced the specific activity of the His-tagged PDK1 (full-length, and the truncated kinase domain) and the activity of the full-length His-tagged AKT1 and AKT2 when assayed in a cascade-type reaction. This enhanced biochemical assay is also suitable for measuring the inhibition of PDK1 by several selective compounds from the carbonyl-4-amino-pyrrolopyrimidine (CAP) series. One of these inhibitors, PF-5168899, was further evaluated using a high content cell-based assay in the presence of CHO cells engineered with GFP-PDK1.  相似文献   
36.
The goal of this study was to compare the effects of acute 2 Gy irradiation with photons (0.8 Gy/min) or protons (0.9 Gy/min), both with and without pre-exposure to low-dose/low-dose-rate γ rays (0.01 Gy at 0.03 cGy/h), on 84 genes involved in stem cell differentiation or regulation in mouse lungs on days 21 and 56. Genes with a ≥1.5-fold difference in expression and P < 0.05 compared to 0 Gy controls are emphasized. Two proteins specific for lung stem cells/progenitors responsible for local tissue repair were also compared. Overall, striking differences were present between protons and photons in modulating the genes. More genes were affected by protons than by photons (22 compared to 2 and 6 compared to 2 on day 21 and day 56, respectively) compared to 0 Gy. Preirradiation with low-dose-rate γ rays enhanced the acute photon-induced gene modulation on day 21 (11 compared to 2), and all 11 genes were significantly downregulated on day 56. On day 21, seven genes (aldh2, bmp2, cdc2a, col1a1, dll1, foxa2 and notch1) were upregulated in response to most of the radiation regimens. Immunoreactivity of Clara cell secretory protein was enhanced by all radiation regimens. The number of alveolar type 2 cells positive for prosurfactant protein C in irradiated groups was higher on day 56 (12.4-14.6 cells/100) than on day 21 (8.5-11.2 cells/100) (P < 0.05). Taken together, these results showed that acute photons and protons induced different gene expression profiles in the lungs and that pre-exposure to low-dose-rate γ rays sometimes had modulatory effects. In addition, proteins associated with lung-specific stem cells/progenitors were highly sensitive to radiation.  相似文献   
37.
Changes in the expression of genes implicated in oxidative stress and in extracellular matrix (ECM) remodeling and selected protein expression profiles in mouse skin were examined after exposure to low-dose-rate or high-dose-rate photon irradiation. ICR mice received whole-body γ rays to total doses of 0, 0.25, 0.5 and 1 Gy at dose rates of 50 cGy/h or 50 cGy/min. Skin tissues were harvested for characterization at 4 h after irradiation. For oxidative stress after low-dose-rate exposure, 0.25, 0.5 and 1 Gy significantly altered 27, 23 and 25 genes, respectively, among 84 genes assessed (P < 0.05). At doses as low as 0.25 Gy, many genes responsible for regulating the production of reactive oxygen species (ROS) were significantly altered, with changes >2-fold compared to 0 Gy. For an ECM profile, 18-20 out of 84 genes were significantly up- or downregulated after low-dose-rate exposure. After high-dose-rate irradiation, of 84 genes associated with oxidative stress, 16, 22 and 22 genes were significantly affected after 0.25, 0.5 and 1 Gy, respectively. Compared to low-dose-rate radiation, high-dose-rate exposure resulted in different ECM gene expression profiles. The most striking changes after low-dose-rate or high-dose-rate exposure on ECM profiles were on genes encoding matrix metalloproteinases (MMPs), e.g., Mmp2 and Mmp15 for low dose rate and Mmp9 and Mmp11 for high dose rate. Immunostaining for MMP-2 and MMP-9 proteins showed radiation dose rate-dependent differences. These data revealed that exposure to low total doses with low-dose-rate or high-dose-rate photon radiation induced oxidative stress and ECM-associated alterations in gene expression profiles. The expression of many genes was differentially regulated by different total dose and/or dose-rate regimens.  相似文献   
38.
39.
Activation of Notch signaling requires intramembranous cleavage by γ-secretase to release the intracellular domain. We previously demonstrated that presenilin and nicastrin, components of the γ-secretase complex, are required for neuronal survival in the adult cerebral cortex. Here we investigate whether Notch1 and/or Notch2 are functional targets of presenilin/γ-secretase in promoting survival of excitatory neurons in the adult cerebral cortex by generating Notch1, Notch2, and Notch1/Notch2 conditional knock-out (cKO) mice. Unexpectedly, we did not detect any neuronal degeneration in the adult cerebral cortex of these Notch cKO mice up to ~2 years of age, whereas conditional inactivation of presenilin or nicastrin using the same αCaMKII-Cre transgenic mouse caused progressive, striking neuronal loss beginning at 4 months of age. More surprisingly, we failed to detect any reduction of Notch1 and Notch2 mRNAs and proteins in the cerebral cortex of Notch1 and Notch2 cKO mice, respectively, even though Cre-mediated genomic deletion of the floxed Notch1 and Notch2 exons clearly took place in the cerebral cortex of these cKO mice. Furthermore, introduction of Cre recombinase into primary cortical cultures prepared from postnatal floxed Notch1/Notch2 pups, where Notch1 and Notch2 are highly expressed, completely eliminated their expression, indicating that the floxed Notch1 and Notch2 alleles can be efficiently inactivated in the presence of Cre. Together, these results demonstrate that Notch1 and Notch2 are not involved in the age-related neurodegeneration caused by loss of presenilin or γ-secretase and suggest that there is no detectable expression of Notch1 and Notch2 in pyramidal neurons of the adult cerebral cortex.  相似文献   
40.

Background

Alagille syndrome is a developmental disorder caused predominantly by mutations in the Jagged1 (JAG1) gene, which encodes a ligand for Notch family receptors. A characteristic feature of Alagille syndrome is intrahepatic bile duct paucity. We described previously that mice doubly heterozygous for Jag1 and Notch2 mutations are an excellent model for Alagille syndrome. However, our previous study did not establish whether bile duct paucity in Jag1/Notch2 double heterozygous mice resulted from impaired differentiation of bile duct precursor cells, or from defects in bile duct morphogenesis.

Methodology/Principal Findings

Here we characterize embryonic biliary tract formation in our previously described Jag1/Notch2 double heterozygous Alagille syndrome model, and describe another mouse model of bile duct paucity resulting from liver-specific deletion of the Notch2 gene.

Conclusions/Significance

Our data support a model in which bile duct paucity in Notch pathway loss of function mutant mice results from defects in bile duct morphogenesis rather than cell fate specification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号