首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2150篇
  免费   255篇
  国内免费   1篇
  2022年   21篇
  2021年   18篇
  2020年   20篇
  2019年   13篇
  2018年   21篇
  2017年   25篇
  2016年   30篇
  2015年   47篇
  2014年   67篇
  2013年   80篇
  2012年   105篇
  2011年   114篇
  2010年   71篇
  2009年   54篇
  2008年   103篇
  2007年   103篇
  2006年   89篇
  2005年   84篇
  2004年   88篇
  2003年   87篇
  2002年   77篇
  2001年   79篇
  2000年   64篇
  1999年   62篇
  1998年   39篇
  1997年   34篇
  1996年   40篇
  1995年   25篇
  1994年   28篇
  1993年   28篇
  1992年   42篇
  1991年   52篇
  1990年   35篇
  1989年   54篇
  1988年   32篇
  1987年   41篇
  1986年   28篇
  1985年   22篇
  1984年   37篇
  1983年   28篇
  1982年   19篇
  1981年   17篇
  1980年   23篇
  1979年   28篇
  1978年   28篇
  1977年   22篇
  1976年   17篇
  1975年   18篇
  1974年   27篇
  1967年   10篇
排序方式: 共有2406条查询结果,搜索用时 15 毫秒
971.
Upon treatment with agents such as thrombin, collagen or concanavalin A, blood platelets change shape, secrete serotonin and phosphorylate two proteins having molecular weights of approximately 20,000 and 40,000. We have analyzed the relationship of this protein phosphorylation to shape change and release aided by the fact that while shape change occurs independently of extracellular calcium, release of serotonin displays a rather strict calcium requirement. Under limited calcium conditions, where virtually no serotonin release occurs, (Con A)-stimulated phosphorylation is uninhibited. Divalent cations (Mg++, Co++ and Zn++) also inhibit release but not phosphorylation. The microtubule effectors colchicine and D2O show concomitant effects on release and phosphorylation, indicating a microtubule involvement prior to phosphorylation. Papaverine inhibits release and phosphorylation while not strongly influencing shape change, suggesting that shape change does not require phosphorylation. We therefore conclude that phosphorylation of these proteins takes place after shape change but prior to release, and although it may be required for secretion to occur, the two processes are easily separated. Thus phosphorylation of these proteins is not likely to be an integral component of the release mechanism.  相似文献   
972.
Immunodeficiency is a barrier to successful vaccination in individuals with cancer and chronic infection. We performed a randomized phase 1/2 study in lymphopenic individuals after high-dose chemotherapy and autologous hematopoietic stem cell transplantation for myeloma. Combination immunotherapy consisting of a single early post-transplant infusion of in vivo vaccine-primed and ex vivo costimulated autologous T cells followed by post-transplant booster immunizations improved the severe immunodeficiency associated with high-dose chemotherapy and led to the induction of clinically relevant immunity in adults within a month after transplantation. Immune assays showed accelerated restoration of CD4 T-cell numbers and function. Early T-cell infusions also resulted in significantly improved T-cell proliferation in response to antigens that were not contained in the vaccine, as assessed by responses to staphylococcal enterotoxin B and cytomegalovirus antigens (P < 0.05). In the setting of lymphopenia, combined vaccine therapy and adoptive T-cell transfer fosters the development of enhanced memory T-cell responses.  相似文献   
973.
We employ a novel, dominant negative approach to identify a key role for certain tethered cyclic AMP specific phosphodiesterase-4 (PDE4) isoforms in regulating cyclic AMP dependent protein kinase A (PKA) sub-populations in resting COS1 cells. A fraction of PKA is clearly active in resting COS1 cells and this activity increases when cells are treated with the selective PDE4 inhibitor, rolipram. Point mutation of a critical, conserved aspartate residue in the catalytic site of long PDE4A4, PDE4B1, PDE4C2 and PDE4D3 isoforms renders them catalytically inactive. Overexpressed in resting COS1 cells, catalytically inactive forms of PDE4C2 and PDE4D3, but not PDE4A4 and PDE4B1, are constitutively PKA phosphorylated while overexpressed active versions of all these isoforms are not. Inactive and active versions of all these isoforms are PKA phosphorylated in cells where protein kinase A is maximally activated with forskolin and IBMX. By contrast, rolipram challenge of COS1 cells selectively triggers the PKA phosphorylation of recombinant, active PDE4D3 and PDE4C2 but not recombinant, active PDE4A4 and PDE4B1. Purified, recombinant PDE4D3 and PDE4A4 show a similar dose-dependency for in vitro phosphorylation by PKA. Disruption of the tethering of PKA type-II to PKA anchor proteins (AKAPs), achieved using the peptide Ht31, prevents inactive forms of PDE4C2 and PDE4D3 being constitutively PKA phosphorylated in resting cells as does siRNA-mediated knockdown of PKA-RII, but not PKA-RI. PDE4C2 and PDE4D3 co-immunoprecipitate from COS1 cell lysates with 250 kDa and 450 kDa AKAPs that tether PKA type-II and not PKA type-I. PKA type-II co-localises with AKAP450 in the centrosomal region of COS1 cells. The perinuclear distribution of recombinant, inactive PDE4D3, but not inactive PDE4A4, overlaps with AKAP450 and PKA type-II. The distribution of PKA phosphorylated inactive PDE4D3 also overlaps with that of AKAP450 in the centrosomal region of COS1 cells. We propose that a novel role for PDE4D3 and PDE4C2 is to gate the activation of AKAP450-tethered PKA type-II localised in the perinuclear region under conditions of basal cAMP generation in resting cells.  相似文献   
974.
975.
In Saccharomyces cerevisiae, Sum1p is a promoter-specific repressor. A single amino acid change generates the mutant Sum1-1p, which causes regional silencing at new loci where wild-type Sum1p does not act. Thus, Sum1-1p is a model for understanding how the spreading of repressive chromatin is regulated. When wild-type Sum1p was targeted to a locus where mutant Sum1-1p spreads, wild-type Sum1p did not spread as efficiently as mutant Sum1-1p did, despite being in the same genomic context. Thus, the SUM1-1 mutation altered the ability of the protein to spread. The spreading of Sum1-1p required both an enzymatically active deacetylase, Hst1p, and the N-terminal tail of histone H4, consistent with the spreading of Sum1-1p involving sequential modification of and binding to histone tails, as observed for other silencing proteins. Furthermore, deletion of the N-terminal tail of H4 caused Sum1-1p to return to loci where wild-type Sum1p acts, consistent with the SUM1-1 mutation increasing the affinity of the protein for H4 tails. These results imply that the spreading of repressive chromatin proteins is regulated by their affinities for histone tails. Finally, this study uncovered a functional connection between wild-type Sum1p and the origin recognition complex, and this relationship also contributes to mutant Sum1-1p localization.  相似文献   
976.
Aging is associated with a slowing of skeletal muscle contractile properties, including a decreased rate of relaxation. In rats, the age-related decrease in the maximal rate of relaxation is reversed after 4-wk administration with the beta2-adrenoceptor agonist (beta2-agonist) fenoterol. Given the critical role of the sarcoplasmic reticulum (SR) in regulating intracellular Ca2+ transients and ultimately the time course of muscle contraction and relaxation, we tested the hypothesis that the mechanisms of action of fenoterol are mediated by alterations in SR proteins. Sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) kinetic properties were assessed in muscle homogenates and enriched SR membranes isolated from the red (RG) and white (WG) portions of the gastrocnemius muscle in adult (16 mo) and aged (28 mo) F344 rats that had been administered fenoterol for 4 wk (1.4 mg/kg/day ip, in saline) or vehicle only. Aging was associated with a 29% decrease in the maximal activity (Vmax) of SERCA in the RG but not in the WG muscles. Fenoterol treatment increased the Vmax of SERCA and SERCA1 protein levels in RG and WG. In the RG, fenoterol administration reversed an age-related selective nitration of the SERCA2a isoform. Our findings demonstrate that the mechanisms underlying age-related changes in contractile properties are fiber type dependent, whereas the effects of fenoterol administration are independent of age and fiber type.  相似文献   
977.
978.
PDE4B and PDE4D provide >90% of PDE4 cAMP phosphodiesterase activity in human embryonic kidney (HEK293B2) cells. Their selective small interference RNA (siRNA)-mediated knockdown potentiates isoprenaline-stimulated protein kinase A (PKA) activation. Whereas endogenous PDE4D co-immunoprecipitates with beta arrestin, endogenous PDE4B does not, even upon PDE4D knockdown. Ectopic overexpression of PDE4B2 confers co-immunoprecipitation with beta arrestin. Knockdown of PDE4D, but not PDE4B, amplifies isoprenaline-stimulated phosphorylation of the beta2-adrenergic receptor (beta2-AR) by PKA and activation of extracellular signal-regulated kinase (ERK) through G(i). Isoform-selective knockdown identifies PDE4D5 as the functionally important species regulating isoprenaline stimulation of both these processes. Ht31-mediated disruption of the tethering of PKA to AKAP scaffold proteins attenuates isoprenaline activation of ERK, even upon PDE4D knockdown. Selective siRNA-mediated knockdown identifies AKAP79, which is constitutively associated with the beta2-AR, rather than isoprenaline-recruited gravin, as being the functionally relevant AKAP in this process. Isoprenaline-stimulated membrane recruitment of PDE4D is ablated upon beta arrestin knockdown. A mutation that compromises interactions with beta arrestin prevents catalytically inactive PDE4D5 from performing a dominant negative role in potentiating isoprenaline-stimulated ERK activation. Beta arrestin-recruited PDE4D5 desensitizes isoprenaline-stimulated PKA phosphorylation of the beta2-AR and the consequential switching of its signaling to ERK. The ability to observe a cellular phenotype upon PDE4D5 knockdown demonstrates that other PDE4 isoforms, expressed at endogenous levels, are unable to afford rescue in HEK293B2 cells.  相似文献   
979.
The human CD45 gene encodes five isoforms of a transmembrane tyrosine phosphatase that differ in their extracellular domains as a result of alternative splicing of exons 4-6. Expression of the CD45 isoforms is tightly regulated in peripheral T cells such that resting cells predominantly express the larger CD45 isoforms, encoded by mRNAs containing two or three variable exons. In contrast, activated T cells express CD45 isoforms encoded by mRNAs lacking most or all of the variable exons. We have previously identified the sequences within CD45 variable exon 4 that control its level of inclusion into spliced mRNAs. Here we map the splicingregulatory sequences within CD45 variable exons 5 and 6. We show that, like exon 4, exons 5 and 6 each contain an exonic splicing silencer (ESS) and an exonic splicing enhancer (ESE), which together determine the level of exon inclusion in na?ve cells. We further demonstrate that the primary activation-responsive silencing motif in exons 5 and 6 is homologous to that in exon 4 and, as in exon 4, binds specifically to the protein heterogeneous nuclear ribonucleoprotein L. Together these studies reveal common themes in the regulation of the CD45 variable exons and provide a mechanistic explanation for the observed physiological expression of CD45 isoforms.  相似文献   
980.
The metabolism of luciferin in mice transgenic for luciferase (luc) produces light that may be detected trans vivo by an intensified CCD camera (biophotonics). Thus, the generation of transgenic promoter-luciferase animals for genes regulated by specific toxic processes, coupled with real-time evaluation of site-specific gene expression may provide novel, non-invasive biomarkers which are predictive of developing toxicity in vivo. As part of a programme to evaluate the potential of biophotonics for predictive toxicology we have conducted a series of studies in HO-1.luc transgenic mice. Male and female animals were treated with chloroform (200 mg/kg, p.o., daily for 5 days) and imaged 2 and 6 h after dosing. During a 2-day washout period, female animals were treated daily with testosterone prior to repeat administration of chloroform for a further 5 days. Comparison of the in vivo response of the luciferase reporter with markers of toxicity measured ex vivo (differential gene expression of adaptive antioxidant response genes, clinical chemistry and microscopic examination) confirms the gender-specific difference in chloroform renal toxicity in HO-1.luc transgenic mice and its reversal following androgenisation of females and correlates with the expression of the endogenous haem oxygenase-1 (HO-1) gene. These studies demonstrate the capacity of biophotonics for real-time site-specific gene expression, which may be predictive of developing toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号