首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   31篇
  216篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   7篇
  2011年   12篇
  2010年   11篇
  2009年   4篇
  2008年   7篇
  2007年   5篇
  2006年   8篇
  2005年   12篇
  2004年   13篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   8篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1970年   4篇
  1969年   2篇
  1966年   2篇
  1965年   2篇
  1959年   1篇
  1958年   2篇
  1954年   1篇
  1947年   1篇
  1938年   1篇
  1936年   1篇
  1935年   1篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
181.
Zinc fingers are small structured protein domains that require the coordination of zinc for a stable tertiary fold. Together with FYVE and PHD, the RING domain forms a distinct class of zinc-binding domains, where two zinc ions are ligated in a cross-braced manner, with the first and third pairs of ligands coordinating one zinc ion, while the second and fourth pairs ligate the other zinc ion. To investigate the relationship between the stability and dynamic behaviour of the domains and the stability of the metal-binding site, we studied metal exchange for the C4C4 RING domains of CNOT4 and the p44 subunit of TFIIH. We found that Zn(2+)-Cd(2+) exchange is different between the two metal-binding sites in the C4C4 RING domains of the two proteins. In order to understand the origins of these distinct exchange rates, we studied the backbone dynamics of both domains in the presence of zinc and of cadmium by NMR spectroscopy. The differential stability of the two metal-binding sites in the RING domains, as reflected by the different metal exchange rates, can be explained by a combination of accessibility and an electrostatic ion interaction model. A greater backbone flexibility for the p44 RING domain as compared to CNOT4 may be related to the distinct types of protein-protein interactions in which the two C4C4 RING domains are involved.  相似文献   
182.
Outsourcing clinical trials sponsored by pharmaceutical companies from industrialized countries to low‐ (middle)‐income countries – summarized as transnational biomedical research (TBR) – has lead to many concerns about ethical standards. Whether study participants are particularly vulnerable is one of those concerns. However, the concept of vulnerability is still vague and varies in its definition. Despite the fact that important international ethical guidelines such as the Declaration of Helsinki by the World Medical Association or the Ethical Guidelines for Biomedical Research Involving Human Subjects by the Council of International Organizations of Medical Sciences refer to vulnerability as ethical principle, each of their approaches are different. To overcome these shortcomings, we analyze and unite different approaches of vulnerability and develop practical criteria in order to operationalize the concept especially for the context of TBR. These criteria refer to the context of a study as well as the characteristics and the current living situation of study participants. Based on a case study of an HIV‐vaccine‐trial conducted in India we demonstrate how those criteria can be applied in a retrospective way to identify potential ethical conflicts. The criteria can also indicate a prospective function for ethical pre‐assessment. For this, we provide an outlook for three major topics: 1. Vulnerability as a normative concept: Different ways of protection; 2. The relevance of transparency and 3. Vulnerability as an instrument to increase decision participation of human subjects.  相似文献   
183.
Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na+ channels that belong to the epithelial Na+ channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na+ and K+ channels, providing the conditions necessary for the transduction of local pH changes into electrical signals. cellular excitability; neuronal signaling; pH  相似文献   
184.
The nucleocapsid protein (NCp7) of human immunodeficiency virus type 1 (HIV-1) contains two highly conserved CCHC zinc fingers that strongly bind Zn(2+) through coordination of one His and three Cys residues. It has been suggested that NCp7 function is conformation specific since substitution of any of the zinc coordinating residues in the zinc finger motifs leads to subsequent loss of viral infectivity. To further determine the structural requirements necessary for this specific conformation, we investigated by (1)H 2D NMR and molecular dynamics simulations the structure of the distal finger motif of NCp7 in which the zinc coordinating amino acid, His 44, was substituted by a noncoordinating Ala residue. While the fold of the N-terminal part of this mutated peptide was similar to that of the native peptide, an increased lability and significant conformational changes were observed in the vicinity of the His-to-Ala mutation. Moreover, molecular dynamics simulations suggested a mechanism by which the variant peptide can bind zinc ion even though one zinc-coordinating amino acid was lacking. Using the fluorescence of the naturally occurring Trp37 residue, the binding affinity of the variant peptide to the (TG)(3) model oligonucleotide was found to be decreased by about 2 orders of magnitude with respect with the native peptide. Modeling of the DNA:NCp7 complex using structures of the variant peptide suggests that the residues forming a hydrophobic cleft in the native protein are improperly oriented for efficient DNA binding by the variant peptide.  相似文献   
185.
Schistosoma mansoni NAD(P)+ catabolizing enzyme (SmNACE) is a new member of the ADP-ribosyl cyclase family. In contrast to all the other enzymes that are involved in the production of metabolites that elicit Ca2+ mobilization, SmNACE is virtually unable to transform NAD+ into the second messenger cyclic ADP-ribose (cADPR). Sequence alignments revealed that one of four conserved residues within the active site of these enzymes was replaced in SmNACE by a histidine (His103) instead of the highly conserved tryptophan. To find out whether the inability of SmNACE to catalyze the canonical ADP-ribosyl cyclase reaction is linked to this change, we have replaced His103 with a tryptophan. The H103W mutation in SmNACE was indeed found to restore ADP-ribosyl cyclase activity as cADPR amounts for 7% of the reaction products (i.e., a value larger than observed for other members of this family such as CD38). Introduction of a Trp103 residue provides some of the binding characteristics of mammalian ADP-ribosyl cyclases such as increased affinity for Cibacron blue and slow-binding inhibition by araF-NAD+. Homology modeling of wild-type and H103W mutant three-dimensional structures, and docking of substrates within the active sites, provides new insight into the catalytic mechanism of SmNACE. Both residue side chains share similar roles in the nicotinamide-ribose bond cleavage step leading to an E.ADP-ribosyl reaction intermediate. They diverge, however, in the evolution of this intermediate; His103 provides a more polar environment favoring the accessibility to water and hydrolysis leading to ADP-ribose at the expense of the intramolecular cyclization pathway resulting in cADPR.  相似文献   
186.
The activity of the plant plasma membrane H+-ATPase is tightly regulated via phosphorylation and binding of 14-3-3 protein to the C-terminus of the pump. Whereas the 14-3-3-binding mechanism has been described in detail, the identity of specific protein kinases and phosphatases involved in the control of 14-3-3 binding has remained elusive. Using the yeast two-hybrid system, GST pull-down assays and overlay experiments, we report that scaffolding subunit A of protein phosphatase 2A (PP2A-A) interacts with the C-terminus of the Arabidopsis plasma membrane H+-ATPase isoform 2. PP2A-A binding is inhibited in the presence of 14-3-3 protein and fusicoccin, a fungal toxin which induces binding of 14-3-3 protein to the C-terminal end of the plasma membrane H+-ATPase. This indicates that PP2A-A and 14-3-3 protein compete with each other for binding to the same region in the C-terminus of the H+-ATPase.  相似文献   
187.
A maturable head-related particle of bacteriophage T4 has been identified and characterized. This epsilon-particle has the same size as the prehead, but its shell is made of the cleaved product of gene 23 (gp23*). It contains internal matter, most likely the processed core proteins, which is lost or modified by experimental manipulations. It accumulates, together with partially filled ("grizzled") heads, in T4 infected cells that are treated with 9-aminoacridine. On sections of "well-preserved" cells the epsilon-particles are not identifiable with certainty; a more or less empty breakdown product of them becomes visible when cytoplasmic leakage is induced. The number of particles per cell is then in agreement with the biochemically and with the number of particles counted in lysates. Morphologically and biochemically, the isolated epsilon-particles closely resemble the empty small particles of 17- -infected cells described in previous papers of this series. Both are composed of gp23* and are still unexpanded, so that they are not yet able to bind the minor head proteins soc and hoc. We discuss the possibility of the epsilon-particle being an intermediate on the normal T4 wild-type head maturation pathway.  相似文献   
188.
The epithelial sodium channel ENaC is physiologically important in the kidney for the regulation of the extracellular fluid volume, and in the lungs for the maintenance of the appropriate airway surface liquid volume that lines the pulmonary epithelium. Besides the regulation of ENaC by hormones, intracellular factors such as Na(+) ions, pH, or Ca(2+) are responsible for fast adaptive responses of ENaC activity to changes in the intracellular milieu. In this study, we show that ENaC is rapidly and reversibly inhibited by internal sulfhydryl-reactive molecules such as methanethiosulfonate derivatives of different sizes, the metal cations Cd(2+) and Zn(2+), or copper(II) phenanthroline, a mild oxidizing agent that promotes the formation of disulfide bonds. At the single channel level, these agents applied intracellularly induce the appearance of long channel closures, suggesting an effect on ENaC gating. The intracellular reducing agent dithiothreitol fully reverses the rundown of ENaC activity in inside-out patches. Our observations suggest that changes in intracellular redox potential modulate ENaC activity and may regulate ENaC-mediated Na(+) transport in epithelia. Finally, substitution experiments reveal that multiple cysteine residues in the amino and carboxyl termini of ENaC subunits are responsible for this thiol-mediated inhibition of ENaC.  相似文献   
189.
The crystal structures of two homologous inhibitors (PMP-C and PMP-D2v) from the insect Locusta migratoria have been determined in complex with bovine alpha-chymotrypsin at 2.1- and 3.0-A resolution, respectively. PMP-C is a potent bovine alpha-chymotrypsin inhibitor whereas native PMP-D2 is a weak inhibitor of bovine trypsin. One unique mutation at the P1 position converts PMP-D2 into a potent bovine alpha-chymotrypsin inhibitor. The two peptides have a similar overall conformation, which consists of a triple-stranded antiparallel beta-sheet connected by three disulfide bridges, thus defining a novel family of serine protease inhibitors. They have in common the protease interaction site, which is composed of the classical protease binding loop (position P5 to P'4, corresponding to residues 26-34) and of an internal segment (residues 15-18), held together by two disulfide bridges. Structural divergences between the two inhibitors result in an additional interaction site between PMP-D2v (position P10 to P6, residues 21-25) and the residues 172-175 of alpha-chymotrypsin. This unusual interaction may be responsible for species selectivity. A careful comparison of data on bound and free inhibitors (from this study and previous NMR studies, respectively) suggests that complexation to the protease stabilizes the flexible binding loop (from P5 to P'4).  相似文献   
190.
Exploring the unknown. The silent revolution of microbiology   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号