首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   91篇
  2023年   4篇
  2022年   8篇
  2021年   13篇
  2020年   8篇
  2019年   6篇
  2018年   7篇
  2017年   15篇
  2016年   24篇
  2015年   36篇
  2014年   30篇
  2013年   38篇
  2012年   43篇
  2011年   49篇
  2010年   33篇
  2009年   31篇
  2008年   47篇
  2007年   33篇
  2006年   41篇
  2005年   52篇
  2004年   55篇
  2003年   17篇
  2002年   32篇
  2001年   15篇
  2000年   9篇
  1999年   17篇
  1998年   12篇
  1997年   6篇
  1996年   4篇
  1995年   5篇
  1994年   12篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1975年   3篇
  1964年   2篇
  1960年   2篇
  1959年   1篇
排序方式: 共有789条查询结果,搜索用时 31 毫秒
71.
Yersinia pestis, the causative agent of plague, has caused several pandemics throughout history and remains endemic in the rodent populations of the western United States. More recently, Y. pestis is one of several bacterial pathogens considered to be a potential agent of bioterrorism. Thus, elucidating potential mechanisms of survival and persistence in the environment would be important in the event of an intentional release of the organism. One such mechanism is entry into the viable but non-culturable (VBNC) state, as has been demonstrated for several other bacterial pathogens. In this study, we showed that Y. pestis became nonculturable by normal laboratory methods after 21 days in a low-temperature tap water microcosm. We further show evidence that, after the loss of culturability, the cells remained viable by using a variety of criteria, including cellular membrane integrity, uptake and incorporation of radiolabeled amino acids, and protection of genomic DNA from DNase I digestion. Additionally, we identified morphological and ultrastructural characteristics of Y. pestis VBNC cells, such as cell rounding and large periplasmic spaces, by electron microscopy, which are consistent with entry into the VBNC state in other bacteria. Finally, we demonstrated resuscitation of a small number of the non-culturable cells. This study provides compelling evidence that Y. pestis persists in a low-temperature tap water microcosm in a viable state yet is unable to be cultured under normal laboratory conditions, which may prove useful in risk assessment and remediation efforts, particularly in the event of an intentional release of this organism.  相似文献   
72.
Although a great deal is known about the cellular function of molecular chaperones in general, very little is known about the effect of temperature selection on the function of molecular chaperones in nonmodel organisms. One major unanswered question is whether orthologous variants of a molecular chaperone from differential thermally adapted species vary in their thermal responses. To address this issue, we utilized a comparative approach to examine the temperature interactions of a major cytosolic molecular chaperone, Hsc70, from differently thermally adapted notothenioids. Using in vitro assays, we measured the ability of Hsc70 to prevent thermal aggregation of lactate dehydrogenase (LDH). We further compared the capacity of Hsc70 to refold chemically denatured LDH over the temperature range of -2 to +45 degrees C. Hsc70 purified from the temperate species exhibited greater ability to prevent the thermal denaturation of LDH at 55 degrees C compared with Hsc70 from the cold-adapted species. Furthermore, Hsc70 from the Antarctic species lost the ability to competently refold chemically denatured LDH at a lower temperature compared with Hsc70 from the temperate species. These data indicate the function of Hsc70 in notothenioid fishes maps onto their thermal history and that temperature selection has acted on these molecular chaperones.  相似文献   
73.
Patients with heart disease are frequently treated with supplemental oxygen. Although oxygen can exhibit vasoactive properties in many vascular beds, its effects on the coronary circulation have not been fully characterized. To examine whether supplemental oxygen administration affects coronary blood flow (CBF) in a clinical setting, we measured in 18 patients with stable coronary heart disease the effects of breathing 100% oxygen by face mask for 15 min on CBF (via coronary Doppler flow wire), conduit coronary diameter, CBF response to intracoronary infusion of the endothelium-dependent dilator ACh and to the endothelium-independent dilator adenosine, as well as arterial and coronary venous concentrations of the nitric oxide (NO) metabolites nitrotyrosine, NO(2)(-), and NO(3)(-). Relative to breathing room air, breathing of 100% oxygen increased coronary resistance by approximately 40%, decreased CBF by approximately 30%, increased the appearance of nitrotyrosine in coronary venous plasma, and significantly blunted the CBF response to ACh. Oxygen breathing elicited these changes without affecting the diameter of large-conduit coronary arteries, coronary venous concentrations of NO(2)(-) and NO(3)(-), or the coronary vasodilator response to adenosine. Administering supplemental oxygen to patients undergoing cardiac catheterization substantially increases coronary vascular resistance by a mechanism that may involve oxidative quenching of NO within the coronary microcirculation.  相似文献   
74.
Viruses exploit a variety of cellular components to complete their life cycles, and it has become increasingly clear that use of host cell microtubules is a vital part of the infection process for many viruses. A variety of viral proteins have been identified that interact with microtubules, either directly or via a microtubule-associated motor protein. Here, we report that Ebola virus associates with microtubules via the matrix protein VP40. When transfected into mammalian cells, a fraction of VP40 colocalized with microtubule bundles and VP40 coimmunoprecipitated with tubulin. The degree of colocalization and microtubule bundling in cells was markedly intensified by truncation of the C terminus to a length of 317 amino acids. Further truncation to 308 or fewer amino acids abolished the association with microtubules. Both the full-length and the 317-amino-acid truncation mutant stabilized microtubules against depolymerization with nocodazole. Direct physical interaction between purified VP40 and tubulin proteins was demonstrated in vitro. A region of moderate homology to the tubulin binding motif of the microtubule-associated protein MAP2 was identified in VP40. Deleting this region resulted in loss of microtubule stabilization against drug-induced depolymerization. The presence of VP40-associated microtubules in cells continuously treated with nocodazole suggested that VP40 promotes tubulin polymerization. Using an in vitro polymerization assay, we demonstrated that VP40 directly enhances tubulin polymerization without any cellular mediators. These results suggest that microtubules may play an important role in the Ebola virus life cycle and potentially provide a novel target for therapeutic intervention against this highly pathogenic virus.  相似文献   
75.
76.
Two genes, bshA and bshB, encoding bile salt hydrolase enzymes (EC 3.5.1.24) were identified in the genome sequence of Lactobacillus acidophilus NCFM. Targeted inactivation of these genes via chromosomal insertion of an integration vector demonstrated different substrate specificities for these two enzymes.  相似文献   
77.
78.
BACKGROUND: A major obstacle to achieving effective DNA-based therapeutics is efficient delivery of the DNA to its site of action in the cell. Upon internalization by endocytosis, the endosomal membrane represents a critical physical barrier preventing access of DNA to the cell cytosol. In order to overcome the membrane barrier and facilitate cytosolic entry, the endosomolytic bacterial protein listeriolysin O (LLO) is a potentially promising agent. METHODS: LLO was incorporated in an anionic liposome-entrapped polycation-condensed DNA delivery system (LPDII). Plasmid DNA was condensed using protamine sulfate and then complexed to anionic liposomes. LLO was incorporated into the delivery vehicle through encapsulation in anionic, pH-sensitive liposomes. Transfection levels were monitored using a model reporter plasmid encoding luciferase in P388D1 cells, a macrophage-like cell line. RESULTS: Transfection using the anionic LPDII delivery platform was enhanced through incorporation of LLO. Additionally, the net charge of the condensate, the lipid composition, and the total amount of LLO-liposomes were all capable of modulating the transfection levels of the vehicle. Importantly, in the presence of serum, transfection levels using the LLO-containing LPDII system were comparable to established cationic lipid delivery systems. CONCLUSIONS: LLO is capable of facilitating transfection using an anionic LPDII system. This anionic delivery vehicle represents the successful combination of the LPDII system for condensation of the DNA with the unique endosomolytic properties of LLO for improved transfection using plasmid DNA.  相似文献   
79.
80.
Mechanisms of copper toxicity and consequences of exposure vary due to uptake route and ionoregulatory status. The goal of this research was to develop a model fish system to assess the influence of different Cu exposure routes (waterborne or dietary) on bioavailability, uptake, and effects in hybrid striped bass (Morone chrysops x Morone saxatilis) acclimated to fresh- or saltwater. Initially, hybrid striped bass were exposed to dietary Cu concentrations of 571, 785, and 1013 mug Cu/g, along with a control (approximately 5 microg Cu/g), for 14 days in saltwater. Intestinal and liver Cu accumulated in a dose-dependent manner in fish exposed to increasing levels of dietary Cu. Chronic (42 days) experiments were then conducted to determine sub-lethal effects of aqueous, dietary, and combined aqueous and dietary Cu exposures to both freshwater- and saltwater-acclimated hybrid striped bass. Growth and Cu accumulation in the gill, intestine, and liver were measured. Although no significant effects were observed in fish exposed to waterborne Cu, those exposed through the diet accumulated significant liver and intestinal Cu but showed no significant change in growth. Overall, these results suggest that at the levels tested, exposure to elevated waterborne Cu did not cause significant long-term tissue Cu accumulation, whereas dietary Cu exposure caused significant liver and intestinal Cu accumulation in hybrid striped bass which was comparable in both freshwater and saltwater (15 g/L).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号