首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   69篇
  2023年   5篇
  2022年   4篇
  2021年   11篇
  2020年   8篇
  2019年   7篇
  2018年   7篇
  2017年   13篇
  2016年   21篇
  2015年   27篇
  2014年   32篇
  2013年   38篇
  2012年   33篇
  2011年   42篇
  2010年   32篇
  2009年   28篇
  2008年   45篇
  2007年   31篇
  2006年   35篇
  2005年   43篇
  2004年   45篇
  2003年   16篇
  2002年   27篇
  2001年   9篇
  2000年   5篇
  1999年   9篇
  1998年   11篇
  1997年   6篇
  1996年   4篇
  1995年   5篇
  1994年   12篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1973年   2篇
  1964年   2篇
  1961年   1篇
  1960年   2篇
  1959年   1篇
  1958年   1篇
  1952年   1篇
  1951年   1篇
排序方式: 共有671条查询结果,搜索用时 31 毫秒
101.
102.
103.
Centaurea maculosa (Lam.) (spotted knapweed) reduces wildlife and livestock habitat biodiversity and increases erosion. Nutrient availability to plants may be used to accelerate succession away from spotted knapweed. Early‐successional plant communities often have high nutrient availability, whereas late‐successional communities are often found on lower nutrient soils. We hypothesized that removal of nutrients would change the competitive advantage from spotted knapweed to Pseudoroegneria spicatum (bluebunch wheatgrass) (late seral). In two addition series matrices, background densities of Secale cereale (annual rye) and Elymus elimoides (bottlebrush squirreltail) (3,000 seeds/m2) were used to remove nutrients from the soil. In another set of addition series matrices, nitrogen (33 kg/ha) or phosphorus (33 kg/ha) were added to the soil. Nutrient analysis of soil and vegetation indicated that annual rye and bottlebrush squirreltail reduced nutrient availability in soils. In another matrix, neither a background density nor nutrients were added. Data were fit into Watkinson's curvilinear model to determine the competitive relationship between bluebunch wheatgrass and spotted knapweed. This allowed comparison of the equivalence ratios (C) generated from each addition series. The C parameters are the per‐plant equivalent of bluebunch wheatgrass or spotted knapweed and can be interpreted as the ratio of intra‐to‐interspecific competition. The C parameters are also the equivalence ratio of the number of spotted knapweed it takes to have equivalent effect on bluebunch wheatgrass or the number of bluebunch wheatgrass having the equivalent effect on spotted knapweed. Without nutrient manipulation, spotted knapweed was more competitive than bluebunch wheatgrass. The C for bluebunch wheatgrass was 0.17, indicating that 0.17 knapweed plants were competitively equivalent to one wheatgrass. Annual rye changed the competitive balance in favor of bluebunch wheatgrass (C = 9.9). Addition of nitrogen, phosphorus, or the mid‐seral species did not change the competitive relationship between the two species. This preliminary study suggests that succession from spotted knapweed to late‐seral bluebunch wheatgrass community may be accelerated by altering resource availability.  相似文献   
104.
105.
The human body’s immune response to bacterial challenge, even when successful in controlling the infection, can result in negative consequences for the host, including reduced functionality of associated tissues. We present and analyze a low-dimensional mathematical model of this immune response to pathogen invasion, incorporating the coordinated actions of active immune cells, and both pro- and anti-inflammatory cytokines. The model simulates both the positive (pathogen reduction) and negative (local tissue dysfunction) effects of the immune response and includes the important role of immunologic memory in the process of a return to stasis. This differential equation-based model is sufficiently general to be applicable to a wide range of human tissues and organs.  相似文献   
106.
The rate of aquatic invasions by planktonic organisms has increased considerably in recent decades. In order to effectively direct funding and resources to control the spread of such invasions, a methodological framework for identifying high-risk transport vectors, as well as ruling out vectors of lesser concern will be necessary. A number of estuarine ecosystems on the North American Pacific Northwest coast have experienced a series of high impact planktonic invasions that have slowly unfolded across the region in recent decades, most notably, that of the planktonic copepod crustacean Pseudodiaptomus inopinus. Although introduction of P. inopinus to the United States almost certainly occurred through the discharge of ballast water from commercial vessels originating in Asia (the species’ native range), the mechanisms and patterns of subsequent spread remain unknown. In order to elucidate the migration events shaping this invasion, we sampled the genomes of copepods from seven invasive and two native populations using restriction-site associated DNA sequencing. This genetic data was evaluated against spatially-explicit genetic simulation models to evaluate competing scenarios of invasion spread. Our results indicate that invasive populations of P. inopinus exhibit a geographically unstructured genetic composition, likely arising from infrequent and large migration events. This pattern of genetic patchiness was unexpected given the linear geographic structure of the sampled populations, and strongly contrasts with the clear invasion corridors observed in many aquatic systems.  相似文献   
107.
The New Zealand ascidian Pyura pachydermatina has a 7–10 cm long body at the end of a stalk up to 1 m long and 1–2 cm in diameter. Two different spicule types are present: dumbbell-shaped spicules of calcite in the fibrous tunic that covers the body and stalk, and antler-shaped spicules of amorphous calcium carbonate in the soft body tissues. Both types form extracellularly within a closed compartment surrounded by an epithelium of sclerocytes. In adults the tunic spicules form in 2–3 weeks in the lumen of the tunic blood vessels, as determined by calcein uptake studies. They add mineral only while surrounded by the sclerocyte epithelium, which is anchored to the vessel wall. Ultimately the sclerocytes rupture at one or more leading points on the spicule. The blood vessel epithelium also becomes very thin at these points and either ruptures or the cells separate. allowing the spicules to migrate out into the tunic. The sclerocytes degenerate and the blood vessel closes behind the migrating spicule, thus maintaining the vessel's integrity. Tunic spicules accumulate in the subcuticular region of the stalk, but the outermost layer of tunic covering the body is periodically sloughed off along with some spicules. This gives the "neck" between body and stalk a flexibility that allows it to orient to currents, and prevents an accumulation of epizoic organisms on the body. The antler spicules form within blood sinuses of the body tissues. The mineral and organic material are arranged in concentric layers. In the branchial sac, oral tentacles, gut and endostyle, where antler spicules occur most densely, the branches interlock, providing support to the soft tissues. They are of many sizes and apparently remain where they form, increasing in number and size throughout the animal's lifespan.  相似文献   
108.
109.
Life history variability includes phenotypic variation in morphology, age, and size at key stage transitions and arises from genotypic, environmental, and genotype-by-environment effects. Life history variation contributes to population abundance, productivity, and resilience, and management units often reflect life history classes. Recent evidence suggests that past Chinook salmon (Oncorhynchus tshawytscha) classifications (e.g., ‘stream’ and ‘ocean’ types) are not distinct evolutionary lineages, do not capture the phenotypic variation present within or among populations, and are poorly aligned with underlying ecological and developmental processes. Here we review recently reported variation in juvenile Chinook salmon life history traits and provide a refined conceptual framework for understanding the causes and consequences of the observed variability. The review reveals a broad continuum of individual juvenile life history pathways, defined primarily by transitions among developmental stages and habitat types used during freshwater rearing and emigration. Life history types emerge from discontinuities in expressed pathways when viewed at the population scale. We synthesize recent research that examines how genetic, conditional, and environmental mechanisms likely influence Chinook salmon life history pathways. We suggest that threshold models hold promise for understanding how genetic and environmental factors influence juvenile salmon life history transitions. Operational life history classifications will likely differ regionally, but should benefit from an expanded lexicon that captures the temporally variable, multi-stage life history pathways that occur in many Chinook salmon populations. An increased mechanistic awareness of life history diversity, and how it affects population fitness and resilience, should improve management, conservation, and restoration of this iconic species.  相似文献   
110.
The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号