首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   22篇
  2021年   9篇
  2020年   5篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   15篇
  2014年   12篇
  2013年   24篇
  2012年   23篇
  2011年   34篇
  2010年   23篇
  2009年   15篇
  2008年   37篇
  2007年   23篇
  2006年   24篇
  2005年   23篇
  2004年   36篇
  2003年   16篇
  2002年   15篇
  2001年   24篇
  2000年   16篇
  1999年   12篇
  1998年   10篇
  1996年   3篇
  1995年   7篇
  1994年   2篇
  1993年   2篇
  1992年   8篇
  1991年   9篇
  1988年   11篇
  1987年   6篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   11篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1964年   3篇
  1960年   2篇
  1958年   1篇
排序方式: 共有520条查询结果,搜索用时 31 毫秒
41.
This study describes a unique assessment of primate intrinsic foot joint kinematics based upon bone pin rigid cluster tracking. It challenges the assumption that human evolution resulted in a reduction of midfoot flexibility, which has been identified in other primates as the “midtarsal break.” Rigid cluster pins were inserted into the foot bones of human, chimpanzee, baboon, and macaque cadavers. The positions of these bone pins were monitored during a plantarflexion‐dorsiflexion movement cycle. Analysis resolved flexion‐extension movement patterns and the associated orientation of rotational axes for the talonavicular, calcaneocuboid, and lateral cubometatarsal joints. Results show that midfoot flexibility occurs primarily at the talonavicular and cubometatarsal joints. The rotational magnitudes are roughly similar between humans and chimps. There is also a similarity among evaluated primates in the observed rotations of the lateral cubometatarsal joint, but there was much greater rotation observed for the talonavicular joint, which may serve to differentiate monkeys from the hominines. It appears that the capability for a midtarsal break is present within the human foot. A consideration of the joint axes shows that the medial and lateral joints have opposing orientations, which has been associated with a rigid locking mechanism in the human foot. However, the potential for this same mechanism also appears in the chimpanzee foot. These findings demonstrate a functional similarity within the midfoot of the hominines. Therefore, the kinematic capabilities and restrictions for the skeletal linkages of the human foot may not be as unique as has been previously suggested. Am J Phys Anthropol 155:610–620, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
42.
Hit-to-lead optimization of a HTS hit led to new carbamoyloxime derivatives. After identification of an advanced hit (8d) the CYP enzyme inhibitory activity of this class of compounds was successfully eliminated. Systematic exploration of different parts of the advanced hit led us to some promising lead compounds with mGluR5 affinities comparable to that of MPEP.  相似文献   
43.
Here we report the discovery and early SAR of a series of mGluR5 negative allosteric modulators (NAMs). Starting from a moderately active HTS hit we synthesized 3,5-disubstituted-oxadiazoles and tetrazoles as mGluR5 NAMs. Based on the analysis of ligand efficiency and lipophilic efficiency metrics we identified a promising lead candidate as a starting point for further optimization.  相似文献   
44.
Neuropathy target esterase (NTE) is an integral membrane protein localized in the endoplasmic reticulum in neurons. Irreversible inhibition of NTE by certain organophosphorus compounds produces a paralysis known as organophosphorus compound-induced delayed neuropathy. In vitro, NTE has phospholipase/lysophospholipase activity that hydrolyses exogenously added single-chain lysophospholipids in preference to dual-chain phospholipids, and NTE mutations have been associated with motor neuron disease. NTE's physiological role is not well understood, although recent studies suggest that it may control the cytotoxic accumulation of lysophospholipids in membranes. We used the NTE catalytic domain (NEST) to hydrolyze palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (p-lysoPC) to palmitic acid in bilayer membranes comprising 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and the fluorophore 1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (NBD-PC). Translational diffusion coefficients (DL) in supported bilayer membranes were measured by fluorescence recovery after pattern photobleaching (FRAPP). The average DL for DOPC/p-lysoPC membranes without NEST was 2.44 µm2s-1 ± 0.09; the DL for DOPC/p-lysoPC membranes containing NEST and diisopropylphosphorofluoridate, an inhibitor, was nearly identical at 2.45 ± 0.08. By contrast, the DL for membranes comprising NEST, DOPC, and p-lysoPC was 2.28 ± 0.07, significantly different from the system with inhibited NEST, due to NEST hydrolysis. Likewise, a system without NEST containing the amount of palmitic acid that would have been produced by NEST hydrolysis of p-lysoPC was identical at 2.26 ± 0.06. These results indicate that NTE's catalytic activity can alter membrane fluidity.  相似文献   
45.
TLR activation of innate immunity prevents the induction of transplantation tolerance and shortens skin allograft survival in mice treated with costimulation blockade. The mechanism by which TLR signaling mediates this effect has not been clear. We now report that administration of the TLR agonists LPS (TLR4) or polyinosinic:polycytidylic acid (TLR3) to mice treated with costimulation blockade prevents alloreactive CD8(+) T cell deletion, primes alloreactive CTLs, and shortens allograft survival. The TLR4- and MyD88-dependent pathways are required for LPS to shorten allograft survival, whereas polyinosinic:polycytidylic acid mediates its effects through a TLR3-independent pathway. These effects are all mediated by signaling through the type 1 IFN (IFN-alphabeta) receptor. Administration of IFN-beta recapitulates the detrimental effects of TLR agonists on transplantation tolerance. We conclude that the type 1 IFN generated as part of an innate immune response to TLR activation can in turn activate adaptive immune responses that abrogate transplantation tolerance. Blocking of type 1 IFN-dependent pathways in patients may improve allograft survival in the presence of exogenous TLR ligands.  相似文献   
46.
The dopamine reuptake inhibitor GBR 12909 (1-{2-[bis(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine, 1) and its analogs have been developed as tools to test the hypothesis that selective dopamine transporter (DAT) inhibitors will be useful therapeutics for cocaine addiction. This 3D-QSAR study focuses on the effect of substitutions in the phenylpropyl region of 1. CoMFA and CoMSIA techniques were used to determine a predictive and stable model for the DAT/serotonin transporter (SERT) selectivity (represented by pK(i) (DAT/SERT)) of a set of flexible analogs of 1, most of which have eight rotatable bonds. In the absence of a rigid analog to use as a 3D-QSAR template, six conformational families of analogs were constructed from six pairs of piperazine and piperidine template conformers identified by hierarchical clustering as representative molecular conformations. Three models stable to y-value scrambling were identified after a comprehensive CoMFA and CoMSIA survey with Region Focusing. Test set correlation validation led to an acceptable model, with q(2)=0.508, standard error of prediction=0.601, two components, r(2)=0.685, standard error of estimate=0.481, F value=39, percent steric contribution=65, and percent electrostatic contribution=35. A CoMFA contour map identified areas of the molecule that affect pK(i) (DAT/SERT). This work outlines a protocol for deriving a stable and predictive model of the biological activity of a set of very flexible molecules.  相似文献   
47.
Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO) represents a promising strategy in the development of novel anti-inflammatory drugs targeting the arachidonic acid cascade. Herein, a class of α-naphthyl pirinixic acids is characterized as dual mPGES-1/5-LO inhibitors. Systematic structural variation was focused on the lipophilic backbone of the scaffold and yielded detailed structure-activity relationships (SAR) with compound 16 (IC50 mPGES-1 = 0.94 μM; IC50 5-LO = 0.1 μM) showing the most favorable in vitro pharmacological profile.  相似文献   
48.
Understanding the molecular basis of how new species arise is a central question and prime challenge in evolutionary biology and includes understanding how genomes diversify. Eukaryotic cells possess an integrated compartmentalized genetic system of endosymbiotic ancestry. The cellular subgenomes in nucleus, mitochondria and plastids communicate in a complex way and co-evolve. The application of hybrid and cybrid technologies, most notably those involving interspecific exchanges of plastid and nuclear genomes, has uncovered a multitude of species-specific nucleo-organelle interactions. Such interactions can result in plastome-genome incompatibilities, which can phenotypically often be recognized as hybrid bleaching, hybrid variegation or disturbance of the sexual phase. The plastid genome, because of its relatively low number of genes, can serve as a valuable tool to investigate the origin of these incompatibilities. In this article, we review progress on understanding how plastome-genome co-evolution contributes to speciation. We genetically classify incompatible phenotypes into four categories. We also summarize genetic, physiological and environmental influence and other possible selection forces acting on plastid-nuclear co-evolution and compare taxa providing molecular access to the underlying loci. It appears that plastome-genome incompatibility can establish hybridization barriers, comparable to the Dobzhansky-Muller model of speciation processes. Evidence suggests that the plastid-mediated hybridization barriers associated with hybrid bleaching primarily arise through modification of components in regulatory networks, rather than of complex, multisubunit structures themselves that are frequent targets.  相似文献   
49.
Animals are active at different times of the day and their activity schedules are shaped by competition, time-limited food resources and predators. Different temporal niches provide different light conditions, which affect the quality of visual information available to animals, in particular for navigation. We analysed caste-specific differences in compound eyes and ocelli in four congeneric sympatric species of Myrmecia ants, with emphasis on within-species adaptive flexibility and daily activity rhythms. Each caste has its own lifestyle: workers are exclusively pedestrian; alate females lead a brief life on the wing before becoming pedestrian; alate males lead a life exclusively on the wing. While workers of the four species range from diurnal, diurnal-crepuscular, crepuscular-nocturnal to nocturnal, the activity times of conspecific alates do not match in all cases. Even within a single species, we found eye area, facet numbers, facet sizes, rhabdom diameters and ocelli size to be tuned to the distinct temporal niche each caste occupies. We discuss these visual adaptations in relation to ambient light levels, visual tasks and mode of locomotion.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号