首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11411篇
  免费   1140篇
  国内免费   3篇
  12554篇
  2023年   48篇
  2022年   112篇
  2021年   229篇
  2020年   100篇
  2019年   152篇
  2018年   185篇
  2017年   172篇
  2016年   313篇
  2015年   480篇
  2014年   520篇
  2013年   621篇
  2012年   886篇
  2011年   881篇
  2010年   565篇
  2009年   520篇
  2008年   728篇
  2007年   704篇
  2006年   624篇
  2005年   652篇
  2004年   661篇
  2003年   588篇
  2002年   598篇
  2001年   138篇
  2000年   110篇
  1999年   127篇
  1998年   144篇
  1997年   99篇
  1996年   100篇
  1995年   94篇
  1994年   82篇
  1993年   90篇
  1992年   65篇
  1991年   71篇
  1990年   84篇
  1989年   89篇
  1988年   68篇
  1987年   55篇
  1986年   49篇
  1985年   47篇
  1984年   53篇
  1983年   64篇
  1982年   59篇
  1981年   51篇
  1980年   57篇
  1979年   32篇
  1978年   40篇
  1977年   39篇
  1975年   26篇
  1973年   28篇
  1971年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Apolipoprotein E (apoE) deficiency has been suggested to induce foam cell formation. Using lipoproteins obtained from wild-type mice and apoE-deficient mice expressing apoB-48 but not apoB-100, we studied apoE-deficient lipoprotein-induced changes in lipoprotein catabolism and protein expression in mouse peritoneal macrophages (MPMs). Our data demonstrate that incubation of MPMs with apoE-deficient lipoproteins induced intracellular lipoprotein, cholesteryl ester, and triglyceride accumulation, which was associated with a time-related decline in apoE-deficient lipoprotein degradation in MPMs. Confocal microscopy analysis indicated that the accumulated lipids were localized in lysosomes. ApoE-deficient lipoproteins reduced the protein levels of lysosomal acid lipase, cathepsin B, and cation-dependent mannose 6 phosphate receptor (MPR46). Exogenous apoE reduced apoE-deficient lipoprotein-induced lipid accumulation and attenuated the suppressive effect of apoE-deficient lipoproteins on lysosomal hydrolase and MPR46 expression. Although oxidized lipoproteins also increased lipid contents in MPMs, exogenous apoE could not attenuate oxidized lipoprotein-induced lipid accumulation. Our in vivo studies also showed that feeding apoE-deficient mice a high-fat diet resulted in cholesteryl ester and triglyceride accumulation and reduced lysosomal hydrolase expression in MPMs. These data suggest that apoE-deficient lipoproteins increase cellular lipid contents through pathways different from those activated by oxidized lipoproteins and that reducing lysosomal hydrolases in macrophages might be a mechanism by which apoE-deficient lipoproteins result in intralysosomal lipoprotein accumulation, thereby inducing foam cell formation.  相似文献   
992.
Spectrin is an ubiquitous protein in metazoan cells, and its flexibility is one of the keys to maintaining cellular structure and organization. Both alpha-spectrin and beta-spectrin polypeptides consist primarily of triple coiled-coil modular repeat units, and two important factors that determine spectrin flexibility are the bending flexibility between two consecutive repeat units and the conformational flexibility of individual repeat units. Atomistic molecular dynamics (MD) simulations are used here to study double spectrin repeat units (DSRUs) from the human erythrocyte beta-spectrin (HEbeta89) and the chicken brain alpha-spectrin (CBalpha1617). From the results of MD simulations, a highly conserved Trp residue in the A-helix of most repeat units that has been suggested to be important in conferring stability to the coiled-coil structures is found not to have a significant effect on the conformational flexibility of individual repeat units. Characterization of the bending flexibility for two consecutive repeats of spectrin via atomistic simulations and coarse-grained (CG) modeling indicate that the bending flexibility is governed by the interactions between the AB-loop of the first repeat unit, the BC-loop of the second repeat unit and the linker region. Specifically, interactions between residues in these regions can lead to a strong directionality in the bending behavior of two repeat units. The biological implications of these finding are discussed.  相似文献   
993.
Tetramerization of the human p53 tumor suppressor protein is required for its biological functions. However, cellular levels of p53 indicate that it exists predominantly in a monomeric state. Since the oligomerization of p53 involves the rate-limiting formation of a primary dimer intermediate, we engineered a covalently linked pair of human p53 tetramerization (p53tet) domains to generate a tandem dimer (p53tetTD) that minimizes the energetic requirements for forming the primary dimer. We demonstrate that p53tetTD self-assembles into an oligomeric structure equivalent to the wild-type p53tet tetramer and exhibits dramatically enhanced oligomeric stability. Specifically, the p53tetTD dimer exhibits an unfolding/dissociation equilibrium constant of 26 fM at 37 degrees C, or a million-fold increase in stability relative to the wild-type p53tet tetramer, and resists subunit exchange with monomeric p53tet. In addition, whereas the wild-type p53tet tetramer undergoes coupled (i.e. two-state) dissociation/unfolding to unfolded monomers, the p53tetTD dimer denatures via an intermediate that is detectable by differential scanning calorimetry but not CD spectroscopy, consistent with a folded p53tetTD monomer that is equivalent to the p53tet primary dimer. Given its oligomeric stability and resistance against hetero-oligomerization, dimerization of p53 constructs incorporating the tetramerization domain may yield functional constructs that may resist exchange with wild-type or mutant forms of p53.  相似文献   
994.
995.
Foamy viruses (FV) are retroviruses that naturally infect many hosts, including most nonhuman primates (NHPs). Zoonotic infection by primate FV has been documented in people in Asia who reported contact with free-ranging macaques. FV transmission in Asia is a concern, given abundant human-NHP contact, particularly at monkey temples and in urban settings. We have developed three assays capable of detecting the presence of FV in Asian NHP species that are commensal with humans: enzyme-linked immunosorbent assay (ELISA), Western blot assays using recombinant viral Gag protein, and an indicator cell line that can detect macaque FV. The recombinant ELISA correlates very well with the presence of FV sequences detected by PCR. We have used these assays to demonstrate both that FV is highly prevalent among free-ranging NHPs and that seroconversion occurs at a young age in these animals. These assays should also prove useful for large-scale analysis of the prevalence of FV infections in human populations in Asia that are commensal with free-ranging NHPs.  相似文献   
996.
Quiescent T lymphocytes containing latent human immunodeficiency virus (HIV) provide a long-lived viral reservoir. This reservoir may be the source of active infection that is reinitiated following the cessation of antiretroviral therapy. Therefore, it is important to understand the mechanisms involved in latent infection to develop new strategies to eliminate the latent HIV reservoir. We have previously demonstrated that latently infected quiescent lymphocytes can be generated during thymopoiesis in vivo in the SCID-hu mouse system. However, there is still a pressing need for an in vitro model of HIV latency in primary human cells. Here, we present a novel in vitro model that recapitulates key aspects of dormant HIV infection. Using an enhanced green fluorescent protein-luciferase fusion protein-containing reporter virus, we have generated a stable infection in primary human CD4(+) CD8(+) thymocytes in the absence of viral gene expression. T-cell activation induces a >200-fold induction of reporter activity. The induced reporter activity originates from a fully reverse-transcribed and integrated genome. We further demonstrate that this model can be useful to study long terminal repeat regulation, as previously characterized NF-kappaB response element mutations decrease the activation of viral gene expression. This model can therefore be used to study intricate molecular aspects of activation-inducible HIV infection in primary cells.  相似文献   
997.
ABGG5 (G5) and ABCG8 (G8) are ABC half-transporters that dimerize within the endoplasmic reticulum, traffic to the cell surface, and mediate cholesterol excretion into bile. Mice harboring defects in the leptin axis (db/db and ob/ob) have reduced biliary cholesterol concentrations. Rapid weight loss brought about by administration of leptin or dietary restriction increases biliary cholesterol excretion. We hypothesized that the reduction in biliary cholesterol in mice harboring defects in the leptin axis is associated with a reduction in G5G8 transporters and that levels of the transporter would increase with leptin administration and dietary restriction. We examined mRNA and protein levels for G5 and G8 in db/db and ob/ob mice. In both models G5 and G8 protein levels were reduced. In ob/ob mice, both leptin administration and dietary restriction increased G5 and G8 protein and biliary cholesterol concentrations. Finally, we examined the effects of tauroursodeoxycholate, which has been shown to increase biliary cholesterol excretion and function as a molecular chaperone. Tauroursodeoxycholate increased G5 and G8 protein and biliary cholesterol concentrations in both wild-type and db/db mice. Our results indicate that the mechanism for reduced biliary cholesterol excretion in db/db and ob/ob mice involves reductions in G5 and G8 protein levels and that this may occur at the level of G5G8 heterodimer assembly within the endoplasmic reticulum.  相似文献   
998.
Ischemia-reperfusion injury induces oxidant stress, and the burst of reactive oxygen species (ROS) production after reperfusion of ischemic myocardium is sufficient to induce cell death. Mitochondrial oxidant production may begin during ischemia prior to reperfusion because reducing equivalents accumulate and promote superoxide production. We utilized a ratiometric redox-sensitive protein sensor (heat shock protein 33 fluorescence resonance energy transfer (HSP-FRET)) to assess oxidant stress in cardiomyocytes during simulated ischemia. HSP-FRET consists of the cyan and yellow fluorescent protein fluorophores linked by the cysteine-containing regulatory domain from bacterial HSP-33. During ischemia, ROS-mediated oxidation of HSP-FRET was observed, along with a decrease in cellular reduced glutathione levels. These findings were corroborated by measurements using redox-sensitive green fluorescent protein, another protein thiol ratiometric sensor, which became 93% oxidized by the end of simulated ischemia. However, cell death did not occur during ischemia, indicating that this oxidant stress is not sufficient to induce death before reperfusion. However, interventions that attenuate ischemic oxidant stress, including antioxidants or scavengers of residual O(2) that attenuate/prevent ROS generation during ischemia, abrogated cell death during simulated reperfusion. These findings reveal that, in isolated cardiomyocytes, sublethal H(2)O(2) generation during simulated ischemia regulates cell death during simulated reperfusion, which is mediated by the reperfusion oxidant burst.  相似文献   
999.
Peptide inhibitors corresponding to sequences in the six helix bundle structure of the fusogenic portion (gp41) of the HIV envelope glycoprotein have been successfully implemented in preventing HIV entry. These peptides bind to regions in HIV gp41 transiently exposed during the fusion reaction. In an effort to improve upon these entry inhibitors, we have successfully designed and tested peptide analogs composed of chemical spacers and reactive moieties positioned strategically to facilitate covalent attachment. Using a temperature-arrested state prime wash in vitro assay we show evidence for the trapping of a pre-six helix bundle fusion intermediate by a covalent reaction with the specific anti-HIV-1 peptide. This is the first demonstration of the trapping of an intermediate conformation of a viral envelope glycoprotein during the fusion process that occurs in live cells. The permanent specific attachment of the covalent inhibitor is projected to improve the pharmacokinetics of administration in vivo and thereby improve the long-term sustainability of peptide entry inhibitor therapy and help to expand its applicability beyond salvage therapy.  相似文献   
1000.
PTIP, a protein with tandem BRCT domains, has been implicated in DNA damage response. However, its normal cellular functions remain unclear. Here we show that while ectopically expressed PTIP is capable of interacting with DNA damage response proteins including 53BP1, endogenous PTIP, and a novel protein PA1 are both components of a Set1-like histone methyltransferase (HMT) complex that also contains ASH2L, RBBP5, WDR5, hDPY-30, NCOA6, SET domain-containing HMTs MLL3 and MLL4, and substoichiometric amount of JmjC domain-containing putative histone demethylase UTX. PTIP complex carries robust HMT activity and specifically methylates lysine 4 (K4) on histone H3. Furthermore, PA1 binds PTIP directly and requires PTIP for interaction with the rest of the complex. Moreover, we show that hDPY-30 binds ASH2L directly. The evolutionarily conserved hDPY-30, ASH2L, RBBP5, and WDR5 likely constitute a subcomplex that is shared by all human Set1-like HMT complexes. In contrast, PTIP, PA1, and UTX specifically associate with the PTIP complex. Thus, in cells without DNA damage agent treatment, the endogenous PTIP associates with a Set1-like HMT complex of unique subunit composition. As histone H3 K4 methylation associates with active genes, our study suggests a potential role of PTIP in the regulation of gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号