首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2921篇
  免费   241篇
  国内免费   3篇
  2023年   8篇
  2022年   36篇
  2021年   82篇
  2020年   29篇
  2019年   54篇
  2018年   55篇
  2017年   48篇
  2016年   94篇
  2015年   153篇
  2014年   159篇
  2013年   187篇
  2012年   263篇
  2011年   241篇
  2010年   160篇
  2009年   136篇
  2008年   177篇
  2007年   182篇
  2006年   160篇
  2005年   140篇
  2004年   121篇
  2003年   121篇
  2002年   131篇
  2001年   31篇
  2000年   13篇
  1999年   22篇
  1998年   30篇
  1997年   24篇
  1996年   18篇
  1995年   15篇
  1994年   13篇
  1993年   18篇
  1992年   19篇
  1991年   8篇
  1990年   12篇
  1989年   16篇
  1988年   12篇
  1987年   12篇
  1986年   10篇
  1984年   10篇
  1982年   11篇
  1981年   8篇
  1980年   5篇
  1979年   10篇
  1978年   5篇
  1977年   13篇
  1975年   6篇
  1974年   8篇
  1971年   8篇
  1968年   5篇
  1967年   5篇
排序方式: 共有3165条查询结果,搜索用时 15 毫秒
81.
82.

Background

Major trauma remains one of the principle causes of disability and death throughout the world. There is currently no satisfactory risk assessment to predict mortality in patients with major trauma. The aim of our study is to examine whether S-100 B protein concentrations correlate with injury severity and survival in patients with major trauma, with special emphasis on patients without head injury.

Methods

Our retrospective data analysis comprised adult patients admitted to our emergency department between 1.12. 2008 and 31.12 2010 with a suspected major trauma. S-100 B concentrations were routinely assessed in major trauma patients.

Results

A total of 27.7% (378) of all patients had major trauma. The median ISS was 24.6 (SD 8.4); 16.6% (63/378) of the patients died. S-100 B concentrations correlated overall with the ISS (p<0.0001). Patients who died had significantly higher S-100 B concentrations than survivors (8.2 μg/l versus 2.2 μg/l, p<0.0001). Polytraumatised patients with and without head trauma did not differ significantly with respect to S-100 B concentration (3.2 μg/l (SD 5.3) versus 2.9 μg/l (SD 3.8), respectively, p = 0.63) or with respect to Injury Severity Score (24.8 (SD 8.6) versus 24.2 (SD 8.1), respectively, p = 0.56). S-100 B concentrations correlated negatively with survival (p<0.0001) in all patients and in both subgroups (p = 0.001 and p = 0.006, respectively)

Conclusions

S-100 concentrations on admission correlate positively with greater injury severity and decreased survival in major trauma patients, independently of the presence of a head injury. S-100 B protein levels at admission in patients with major trauma may therefore be used to assess outcome in all polytraumatised patients. These measurements should be subject to further evaluation.  相似文献   
83.
84.
85.
The success of invasive alien and common native species may be explained by the same underlying mechanisms. Differences in intraspecific competition as well as differences in plant–soil feedback have been put forward as potential determinants of plant success. We teased apart the relative roles of competition and plant–soil feedback in a greenhouse experiment with 30 common and rare alien and native species from nine plant families. We tested whether plant biomass decreased less for common than rare species, regardless of origin, when grown at higher relative frequencies (1, 3 or 6 out of 9 plants per pot) in a community and in soil previously conditioned by the same species at different frequencies (0, 1, 3 or 6 out of 9 plants per pot) in an orthogonal design for these two factors. Plant survival decreased slightly, but non‐significantly, for all species when grown in soil previously occupied by conspecifics. Among surviving plants, we found a decrease in biomass with increasing intraspecific competition across all species (regardless of origin or commonness), and alien species were more negatively affected by previous high plant frequency than native species, but only marginally significantly so. Our findings suggest that, while intraspecific competition limits individual biomass in a density‐dependent manner, these effects do not depend on species origin or commonness. Notably, alien species but not natives showed a decrease in performance when grown in soil pre‐conditioned with a higher frequency of conspecifics. In conclusion, soil‐borne pathogen accumulation might be weak in its effects on plant performance compared to intraspecific competition, with neither being clearly linked to species commonness.  相似文献   
86.
The enormous diversity of seed traits is an intriguing feature and critical for the overwhelming success of higher plants. In particular, seed mass is generally regarded to be key for seedling development but is mostly approximated by using scanning methods delivering only two-dimensional data, often termed seed size. However, three-dimensional traits, such as the volume or mass of single seeds, are very rarely determined in routine measurements. Here, we introduce a device named phenoSeeder, which enables the handling and phenotyping of individual seeds of very different sizes. The system consists of a pick-and-place robot and a modular setup of sensors that can be versatilely extended. Basic biometric traits detected for individual seeds are two-dimensional data from projections, three-dimensional data from volumetric measures, and mass, from which seed density is also calculated. Each seed is tracked by an identifier and, after phenotyping, can be planted, sorted, or individually stored for further evaluation or processing (e.g. in routine seed-to-plant tracking pipelines). By investigating seeds of Arabidopsis (Arabidopsis thaliana), rapeseed (Brassica napus), and barley (Hordeum vulgare), we observed that, even for apparently round-shaped seeds of rapeseed, correlations between the projected area and the mass of seeds were much weaker than between volume and mass. This indicates that simple projections may not deliver good proxies for seed mass. Although throughput is limited, we expect that automated seed phenotyping on a single-seed basis can contribute valuable information for applications in a wide range of wild or crop species, including seed classification, seed sorting, and assessment of seed quality.Seeds play a major role in keeping continuity between successive generations (Esau, 1977) and are key for the distribution and evolution (Moles et al., 2005) of higher plants. Fertile seeds carry an embryo and may contain nutrient storage tissues in cotyledons, endosperm, and/or perisperm, supporting germination and seedling development at early developmental stages. Although this is true for all seed plants, various traits of seeds, such as size, shape, weight, and chemical composition, can be very different between plant species or accessions. For example, the Arabidopsis (Arabidopsis thaliana) accession Cape Verde Islands was reported to yield on average 40% fewer seeds than Landsberg erecta, but they are almost twice as heavy (Alonso-Blanco et al., 1999). Considering today’s plant species, single-seed mass may vary over a range of 11.5 orders of magnitude (Moles et al., 2005). Seed mass is under strong genetic control, whereas the total number of seeds of a plant is largely affected by the environment (Paul-Victor and Turnbull, 2009). It has been demonstrated that the size, mass, and shape of Arabidopsis seeds may be regulated by brassinosteroid (Jiang et al., 2013), and it was shown recently that seed size in rice (Oryza sativa) can be influenced by the epiallele Epi-rav6 (Zhang et al., 2015). The ability of plants to switch between small and larger seeds may be understood as an adaptation to novel environments (Igea et al., 2016). However, it is still not fully understood whether, or to what extent, the variability of seed traits within plant species or genotypes has an impact on the development and further performance of a plant.When comparing biometric seed data of different dimensions such as length (one-dimensional), projected area (two-dimensional [2D]), or volume and mass (both three-dimensional [3D]), one can argue that mass is the most relevant parameter as a proxy for the amount of reserves a seed provides for the offspring. This might be true even when considering that the type of reserves, such as proteins, carbohydrates, or lipids (Rolletschek et al., 2015), and also different seed tissues, such as seed coat, embryo, or endosperm, may contribute differently to seed mass (Alonso-Blanco et al., 1999). While seed mass and time to germination (radicle protrusion) do not necessarily correlate (Norden et al., 2009), in particular under greenhouse conditions, higher seed mass may be advantageous for seedling establishment under adverse environmental conditions (Moles et al., 2005). For example, shade-tolerant species showed largely higher seed masses than cogeneric species growing in open habitats, indicating that seedlings under low-light conditions need more reserves than under good light (Salisbury, 1974). Seedlings of wild radish (Raphanus raphanistrum) emerged more likely from heavier seeds than from small seeds under field conditions but not in the greenhouse (Stanton, 1984), and for Arabidopsis, seed mass was reported to be higher in populations growing naturally at higher altitudes taken as a proxy for harsher conditions (Montesinos-Navarro et al., 2011).Seed mass can be measured individually (Stanton, 1984), but it is generally collected as an average value of batches of 50 to 1,000 seeds (Jako et al., 2001; Jofuku et al., 2005; Montesinos-Navarro et al., 2011; Tanabata et al., 2012). Alternatively, 2D scans are analyzed to determine parameters such as seed length, width, area, and perimeter length as a measure for seed size (Tanabata et al., 2012). This approach can be implemented in high-throughput facilities to obtain projected areas of seed grains combined with genome-wide association studies (Yang et al., 2014). Although projected seed area can easily be measured with a common office scanner (Herridge et al., 2011; Tanabata et al., 2012; Moore et al., 2013), it is not necessarily a precise or reliable measure of the true seed size because it may depend on the shape (Alonso-Blanco et al., 1999) and the orientation of a seed at scan (see “Results”). These issues also apply when using 2D projections to calculate length-to-width ratios as a simple shape factor (Tanabata et al., 2012). Projected seed area also has been used to calculate seed mass, assuming a fixed relationship between these parameters (de Jong et al., 2011; Herridge et al., 2011). This may hold with sufficient accuracy when averaging a large number of seeds but might be misleading when considering individual seeds.From a physical point of view, volume should be a much better proxy for mass than 2D traits. Although it has been stated that for 65 species analyzed seed masses can be compared easily with seed volumes (Moles et al., 2005), it is not clear how these seed volumes were determined. Volumes can be assessed using advanced methods such as x-ray computed tomography (CT) on fruits (Stuppy et al., 2003) or synchrotron radiation x-ray tomographic microscopy applied in paleobiological studies (e.g. on fruits and seed; Friis et al., 2014). Nuclear magnetic resonance (NMR) methods are used to measure water uptake in kidney beans (Phaseolus vulgaris) and adzuki beans (Vigna angularis; Kikuchi et al., 2006) or to estimate seed weight and content (Borisjuk et al., 2011; Rolletschek et al., 2015) rather than volumes. To our best knowledge, affordable methods to measure seed volumes directly are not achievable so far. For that reason, we have set up a volume-carving method for 3D seed shape reconstruction that is described briefly here and in more detail in a recent publication (Roussel et al., 2016).While traits derived from scanning procedures can easily be assigned to individual seeds (Herridge et al., 2011), further handling and processing of phenotyped single seeds is not as simple, in particular for tiny ones like those of Arabidopsis. The aim of this work was to develop an automated seed-handling system that can analyze single seeds of very different sizes or shapes, from Arabidopsis seeds up to barley (Hordeum vulgare) seeds or even bigger. The phenoSeeder system is designed to pick and place seeds, to achieve basic morphometric traits (one-dimensional and 2D data from projections, 3D reconstruction data, and mass) of each individual seed, and to store all analyzed seed traits in a database. Another goal is to use phenoSeeder for seed-to-plant tracking approaches and to analyze whether, or which, particular seed traits have an impact on plant development and performance under various environmental conditions. We describe the main features of the phenoSeeder technology and present results obtained with seeds of three accessions of Arabidopsis, rapeseed (Brassica napus), and barley, respectively. When analyzing the data, we focused particularly on correlations between projected seed area, seed volume, and seed mass, with the hypothesis that the respective seed volume may better correlate with mass than the projected area.  相似文献   
87.
Many groups of closely related species have reticulate phylogenies. Recent genomic analyses are showing this in many insects and vertebrates, as well as in microbes and plants. In microbes, lateral gene transfer is the dominant process that spoils strictly tree‐like phylogenies, but in multicellular eukaryotes hybridization and introgression among related species is probably more important. Because many species, including the ancestors of ancient major lineages, seem to evolve rapidly in adaptive radiations, some sexual compatibility may exist among them. Introgression and reticulation can thereby affect all parts of the tree of life, not just the recent species at the tips. Our understanding of adaptive evolution, speciation, phylogenetics, and comparative biology must adapt to these mostly recent findings. Introgression has important practical implications as well, not least for the management of genetically modified organisms in pest and disease control.  相似文献   
88.
Ecotoxicological tests (or bioassays) are controlled, reproducible tests where ecological responses are determined quantitatively. Due to numerous difficulties arising when airborne emissions are sampled, relatively few ecotoxicological assays have been applied. Aerosol particles are generally collected on a filter, which limits the quantity of the sample, thus also limiting the range of available test organisms. Bacterial bioassays require low sample quantity, and make a good choice when eco‐ or genotoxicity of the sample are to be determined. Of bacterial assays, the bioluminescence inhibition test has been proven applicable for assessing toxicity of airborne contaminants. In this paper diverse test protocols and their modifications are reviewed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
89.
Combining community needs and preferences with dryland plant expertise in order to select suitable native species for large‐scale natural capital restoration is the approach that has been successful in the Sahel as part of Africa's Great Green Wall program. In order to increase plant diversity and restore degraded land, we investigated four cross‐border regions of Mali, Burkina Faso, and Niger, all located in dryland ecosystems of the Sahel. In 120 beneficiary village communities, with a total population of over 50,000 farmers, including 51% women, participatory diagnostic meetings were conducted, leading to the selection of 193 plant species, most of which were mainly used for food, medicine, fodder, and fuel. Of these, 170 were native and considered suitable for enriching and restoring those village lands. The most environmentally well‐adapted and economically relevant species were prioritized, quality seeds were collected, and nursery seedlings produced under technical supervision of villages. From 2013 to 2015, 55 woody and herbaceous species were planted to initiate restoration of 2,235 ha of degraded land. On average, 60% of seedlings survived and grew well in the field after three rainy seasons. Due to its multiple uses, including gum arabic production, Acacia senegal was preferred by local people in most cases, accounting for 30% of seedlings planted. Such promising results, in an effort to restore degraded land for and with the help of thousands of farmers, could not have been achieved without the combination of scientific plant expertise and efficient rural capacity development, underpinned by high levels of community engagement.  相似文献   
90.
When recombinant DNA technology was developed more than 40 years ago, no one could have imagined the impact it would have on both society and the scientific community. In the field of genetic engineering, the most important tool developed was the plasmid vector. This technology has been continuously expanding and undergoing adaptations. Here, we provide a detailed view following the evolution of vectors built throughout the years destined to study microorganisms and their peculiarities, including those whose genomes can only be revealed through metagenomics. We remark how synthetic biology became a turning point in designing these genetic tools to create meaningful innovations. We have placed special focus on the tools for engineering bacteria and fungi (both yeast and filamentous fungi) and those available to construct metagenomic libraries. Based on this overview, future goals would include the development of modular vectors bearing standardized parts and orthogonally designed circuits, a task not fully addressed thus far. Finally, we present some challenges that should be overcome to enable the next generation of vector design and ways to address it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号