首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1158篇
  免费   90篇
  2022年   11篇
  2021年   14篇
  2020年   9篇
  2019年   12篇
  2018年   14篇
  2017年   9篇
  2016年   21篇
  2015年   42篇
  2014年   36篇
  2013年   53篇
  2012年   79篇
  2011年   81篇
  2010年   51篇
  2009年   42篇
  2008年   69篇
  2007年   68篇
  2006年   61篇
  2005年   57篇
  2004年   62篇
  2003年   60篇
  2002年   50篇
  2001年   21篇
  2000年   12篇
  1999年   12篇
  1998年   17篇
  1997年   7篇
  1996年   13篇
  1995年   15篇
  1994年   8篇
  1993年   10篇
  1992年   10篇
  1991年   16篇
  1990年   16篇
  1989年   19篇
  1988年   8篇
  1987年   10篇
  1986年   11篇
  1985年   14篇
  1984年   13篇
  1983年   8篇
  1982年   10篇
  1981年   6篇
  1980年   9篇
  1979年   7篇
  1976年   6篇
  1975年   8篇
  1973年   5篇
  1968年   4篇
  1967年   4篇
  1965年   6篇
排序方式: 共有1248条查询结果,搜索用时 15 毫秒
171.
172.
Mammals dominate modern terrestrial herbivore ecosystems, whereas extant herbivorous reptiles are limited in diversity and body size. The evolution of reptile herbivory and its relationship to mammalian diversification is poorly understood with respect to climate and the roles of predation pressure and competition for food resources. Here, we describe a giant fossil acrodontan lizard recovered with a diverse mammal assemblage from the late middle Eocene Pondaung Formation of Myanmar, which provides a historical test of factors controlling body size in herbivorous squamates. We infer a predominately herbivorous feeding ecology for the new acrodontan based on dental anatomy, phylogenetic relationships and body size. Ranking body masses for Pondaung Formation vertebrates indicates that the lizard occupied a size niche among the larger herbivores and was larger than most carnivorous mammals. Paleotemperature estimates of Pondaung Formation environments based on the body size of the new lizard are approximately 2–5°C higher than modern. These results indicate that competitive exclusion and predation by mammals did not restrict body size evolution in these herbivorous squamates, and elevated temperatures relative to modern climates during the Paleogene greenhouse may have resulted in the evolution of gigantism through elevated poikilothermic metabolic rates and in response to increases in floral productivity.  相似文献   
173.
174.
The distribution and morphology of the argentaffin cell population within the stomach of the albino rat has been investigated histologically. The argentaffin cell's situation is restricted to and evenly distributed over the antrum, lying usually in the basal third of the mucosa among mucous cells. A band of mucosa, less than a millimeter wide, containing argentaffin cells, extends from the antrum and encircles the stomach just caudal to the forestomach. The argentaffin cell population is found in less than three-tenths of the total stomach by weight, a point for consideration in serotonin assay.  相似文献   
175.
176.
Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life‐history costs of sprouting, and of dormancy. Short‐lived and mycoheterotrophic species have higher proportions of dormant plants than long‐lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.  相似文献   
177.
178.

Background

This retrospective study was undertaken to determine if the plasma circulating tumor DNA (ctDNA) level and tumor biological features in patients with advanced solid tumors affected the detection of genomic alterations (GAs) by a plasma ctDNA assay.

Method

Cell-free DNA (cfDNA) extracted from frozen plasma (N?=?35) or fresh whole blood (N?=?90) samples were subjected to a 62-gene hybrid capture-based next-generation sequencing assay FoundationACT. Concordance was analyzed for 51 matched FoundationACT and FoundationOne (tissue) cases. The maximum somatic allele frequency (MSAF) was used to estimate the amount of tumor fraction of cfDNA in each sample. The detection of GAs was correlated with the amount of cfDNA, MSAF, total tumor anatomic burden (dimensional sum), and total tumor metabolic burden (SUVmax sum) of the largest ten tumor lesions on PET/CT scans.

Results

FoundationACT detected GAs in 69 of 81 (85%) cases with MSAF >?0. Forty-two of 51 (82%) cases had ≥?1 concordance GAs matched with FoundationOne, and 22 (52%) matched to the National Comprehensive Cancer Network (NCCN)-recommended molecular targets. FoundationACT also detected 8 unique molecular targets, which changed the therapy in 7 (88%) patients who did not have tumor rebiopsy or sufficient tumor DNA for genomic profiling assay. In all samples (N?=?81), GAs were detected in plasma cfDNA from cancer patients with high MSAF quantity (P?=?0.0006) or high tumor metabolic burden (P?=?0.0006) regardless of cfDNA quantity (P?=?0.2362).

Conclusion

This study supports the utility of using plasma-based genomic assays in cancer patients with high plasma MSAF level or high tumor metabolic burden.
  相似文献   
179.
Microbial respiration (Rm) and ecoenzyme activities (EEA) related to microbial carbon, nitrogen, and phosphorus acquisition were measured in 792 freshwater and estuarine wetlands (representing a cumulative area of 217,480 km2) across the continental United States as part of the US EPA’s 2011 National Wetland Condition Assessment. EEA stoichiometry was used to construct models for and assess nutrient limitation, carbon use efficiency (CUE), and organic matter decomposition (? k). The wetlands were classified into ten groups based on aggregated ecoregion and wetland type. The wetlands were also assigned to least, intermediate, and most disturbed classes, based on the extent of human influences. Ecoenzyme activity related to C, N and P acquisition, Rm, CUE, and ? k differed among ecoregion–wetland types and, with the exception of C acquisition and ? k, among disturbance classes. Rm and EEA were positively correlated with soil C, N and P content (r = 0.15–0.64) and stoichiometry (r = 0.15–0.48), and negatively correlated with an index of carbon quality (r = ? 0.22 to ? 0.39). EEA stoichiometry revealed that wetlands were more often P- than N-limited, and that P-limitation increases with increasing disturbance. Our enzyme-based approach for modeling C, N, and P acquisition, and organic matter decomposition, all rooted in stoichiometric theory, provides a mechanism for modeling resource limitations of microbial metabolism and biogeochemical cycling in wetlands. Given the ease of collecting and analyzing soil EEA and their response to wetland disturbance gradients, enzyme stoichiometry models are a cost-effective tool for monitoring ecosystem responses to resource availability and the environmental drivers of microbial metabolism, including those related to global climate changes.  相似文献   
180.
Abstract

Paleontological field work in the Fayum Depression of Egypt has produced a remarkable diversity of fossil anthropoids, and this, combined with advances in genetic analyses of living anthropoids, has led to establishment of a temporal and phylogenetic framework for anthropoids that is achieving some degree of consensus. Less well understood are the evolutionary mechanisms and selective factors behind the origin and early diversification of anthropoids. One area that has remained under explored is investigation into the life history patterns of early anthropoids, a major omission given that understanding patterns of growth and development is essential for interpreting the paleobiology of fossil species. Here we detail dental emergence sequences for five species in four families of early anthropoid primates from the Fayum, and use these data to test Schultz’s Rule concerning the timing of emergence of molars versus premolars in mammals. Two important results are generated: (1) only one species had a dental eruption sequence identical to that observed among crown catarrhine primates; and (2) in all cases, the permanent canine was the last post-incisor dental element to fully erupt, a finding that may be significant for interpreting early anthropoid behavioral strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号