首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1659篇
  免费   204篇
  国内免费   1篇
  2022年   10篇
  2021年   22篇
  2020年   13篇
  2019年   19篇
  2018年   20篇
  2017年   23篇
  2016年   31篇
  2015年   49篇
  2014年   62篇
  2013年   79篇
  2012年   85篇
  2011年   85篇
  2010年   66篇
  2009年   50篇
  2008年   83篇
  2007年   57篇
  2006年   66篇
  2005年   67篇
  2004年   63篇
  2003年   64篇
  2002年   53篇
  2001年   54篇
  2000年   43篇
  1999年   30篇
  1998年   22篇
  1997年   15篇
  1996年   20篇
  1995年   14篇
  1994年   21篇
  1992年   42篇
  1991年   44篇
  1990年   26篇
  1989年   27篇
  1988年   27篇
  1987年   30篇
  1986年   25篇
  1985年   28篇
  1984年   35篇
  1983年   28篇
  1982年   23篇
  1981年   13篇
  1980年   15篇
  1979年   21篇
  1977年   16篇
  1976年   11篇
  1974年   14篇
  1973年   16篇
  1972年   23篇
  1970年   9篇
  1966年   14篇
排序方式: 共有1864条查询结果,搜索用时 31 毫秒
231.
The type VI secretion system (T6SS) has emerged as an important mediator of interbacterial interactions. A T6SS from Pseudomonas aeruginosa targets at least three effector proteins, type VI secretion exported 1–3 (Tse1–3), to recipient Gram-negative cells. The Tse2 protein is a cytoplasmic effector that acts as a potent inhibitor of target cell proliferation, thus providing a pronounced fitness advantage for P. aeruginosa donor cells. P. aeruginosa utilizes a dedicated immunity protein, type VI secretion immunity 2 (Tsi2), to protect against endogenous and intercellularly-transferred Tse2. Here we show that Tse2 delivered by the T6SS efficiently induces quiescence, not death, within recipient cells. We demonstrate that despite direct interaction of Tsi2 and Tse2 in the cytoplasm, Tsi2 is dispensable for targeting the toxin to the secretory apparatus. To gain insights into the molecular basis of Tse2 immunity, we solved the 1.00 Å X-ray crystal structure of Tsi2. The structure shows that Tsi2 assembles as a dimer that does not resemble previously characterized immunity or antitoxin proteins. A genetic screen for Tsi2 mutants deficient in Tse2 interaction revealed an acidic patch distal to the Tsi2 homodimer interface that mediates toxin interaction and immunity. Consistent with this finding, we observed that destabilization of the Tsi2 dimer does not impact Tse2 interaction. The molecular insights into Tsi2 structure and function garnered from this study shed light on the mechanisms of T6 effector secretion, and indicate that the Tse2–Tsi2 effector–immunity pair has features distinguishing it from previously characterized toxin–immunity and toxin–antitoxin systems.  相似文献   
232.
233.
Several arenaviruses, including Lassa virus (LASV), are causative agents of hemorrhagic fever, for which effective therapeutic options are lacking. The LASV envelope glycoprotein (GP) gene was used to generate lentiviral pseudotypes to identify small-molecule inhibitors of viral entry. A benzimidazole derivative with potent antiviral activity was identified from a high-throughput screen utilizing this strategy. Subsequent lead optimization for antiviral activity identified a modified structure, ST-193, with a 50% inhibitory concentration (IC(50)) of 1.6 nM against LASV pseudotypes. ST-193 inhibited pseudotypes generated with other arenavirus envelopes as well, including the remaining four commonly associated with hemorrhagic fever (IC(50)s for Junín, Machupo, Guanarito, and Sabiá were in the 0.2 to 12 nM range) but exhibited no antiviral activity against pseudotypes incorporating either the GP from the LASV-related arenavirus lymphocytic choriomeningitis virus (LCMV) or the unrelated G protein from vesicular stomatitis virus, at concentrations of up to 10 microM. Determinants of ST-193 sensitivity were mapped through a combination of LASV-LCMV domain-swapping experiments, genetic selection of viral variants, and site-directed mutagenesis. Taken together, these studies demonstrate that sensitivity to ST-193 is dictated by a segment of about 30 amino acids within the GP2 subunit. This region includes the carboxy-terminal region of the ectodomain and the predicted transmembrane domain of the envelope protein, revealing a novel antiviral target within the arenavirus envelope GP.  相似文献   
234.
Larson RL 《Theriogenology》2008,70(3):565-568
It is important for food animal veterinarians to understand the interaction among animals, pathogens, and the environment, in order to implement herd-specific biosecurity plans. Animal factors such as the number of immunologically protected individuals influence the number of individuals that a potential pathogen is able to infect, as well as the speed of spread through a population. Pathogens differ in their virulence and contagiousness. In addition, pathogens have various methods of transmission that impact how they interact with a host population. A cattle population's environment includes its housing type, animal density, air quality, and exposure to mud or dust and other health antagonists such as parasites and stress; these environmental factors influence the innate immunity of a herd by their impact on immunosuppression. In addition, a herd's environment also dictates the "animal flow" or contact and mixing patterns of potentially infectious and susceptible animals. Biosecurity is the attempt to keep infectious agents away from a herd, state, or country, and to control the spread of infectious agents within a herd. Infectious agents (bacteria, viruses, or parasites) alone are seldom able to cause disease in cattle without contributing factors from other infectious agents and/or the cattle's environment. Therefore to develop biosecurity plans for infectious disease in cattle, veterinarians must consider the pathogen, as well as environmental and animal factors.  相似文献   
235.
Genetic and environmental agents that disrupt organogenesis are numerous and well described. Less well established, however, is the role of delay in the developmental processes that yield functionally immature tissues at birth. Evidence is mounting that organs do not continue to develop postnatally in the context of these organogenesis insults, condemning the patient to utilize under-developed tissues for adult processes. These poorly differentiated organs may appear histologically normal at birth but with age may deteriorate revealing progressive or adult-onset pathology. The genetic and molecular underpinning of the proposed paradigm reveals the need for a comprehensive systems biology approach to evaluate the role of maternal-fetal environment on organogenesis.  相似文献   
236.
237.
Amelogenin is the predominant protein found during enamel development and is thought to be the biomineralization protein controlling the unique elongated hydroxyapatite crystals that constitute enamel. The secondary structure of biomineralization proteins is thought to be important in the interaction with hydroxyapatite. Unfortunately, very little data are available on the structure or the orientation of amelogenin, either in solution or bound to hydroxyapatite. The C-terminus contains the majority of the charged residues and is predicted to interact with hydroxyapatite; thus, we used solid-state NMR dipolar recoupling techniques to investigate the structure and orientation of the C-terminus of LRAP, a naturally occurring splice variant of full-length amelogenin. Using 13C{15N} Rotational Echo DOuble Resonance (REDOR), the structure of the C-terminus was found to be largely random coil, both on the surface of hydroxyapatite as well as lyophilized from solution. The orientation of the C-terminal region with respect to hydroxyapatite was investigated for two alanine residues (Ala46 and Ala49) using 13C{31P} REDOR and one lysine residue (Lys52) using 15N{31P} REDOR. The residues examined were found to be 7.0, 5.7, and 5.8 Å from the surface of hydroxyapatite for Ala46, Ala49, and Lys52, respectively. This provides direct evidence that the charged C-terminus is interacting closely with hydroxyapatite, positioning the acidic amino acids to aid in controlling crystal growth. However, solid-state NMR dynamics measurements also revealed significant mobility in the C-terminal region of the protein, in both the side chains and the backbone, suggesting that this region alone is not responsible for binding.  相似文献   
238.
The placement of the extreme thermophile Aquifex aeolicus in the bacterial phylogenetic tree has evoked much controversy. We investigated whether adaptations for growth at high temperatures would alter a key functional component of the replication machinery, specifically DnaG primase. Although the structure of bacterial primases is conserved, the trinucleotide initiation specificity for A. aeolicus was hypothesized to differ from other microbes as an adaptation to a geothermal milieu. To determine the full range of A. aeolicus primase activity, two oligonucleotides were designed that comprised all potential trinucleotide initiation sequences. One of the screening templates supported primer synthesis and the lengths of the resulting primers were used to predict possible initiation trinucleotides. Use of trinucleotide-specific templates demonstrated that the preferred initiation trinucleotide sequence for A. aeolicus primase was 5′-d(CCC)-3′. Two other sequences, 5′-d(GCC)-3′ and d(CGC)-3′, were also capable of supporting initiation, but to a much lesser degree. None of these trinucleotides were known to be recognition sequences used by other microbial primases. These results suggest that the initiation specificity of A. aeolicus primase may represent an adaptation to a thermophilic environment.  相似文献   
239.
Lake Uddjaur in northern Sweden was formed as a consequence of non‐uniform glacio‐isostatic uplift in which a forested valley was gradually flooded and high elevation areas became islands. We hypothesized that small islands in Lake Uddjaur burnt through lightning strike more frequently when they were part of a large forested area compared to when they became true islands, and that this reduction in fire impact has enhanced the domination of late successional species and humus accumulation. Fire history and vegetation dynamics were studied by analysis of macroscopic charcoal (> 0.5 mm) and pollen in humus profiles from two islands. According to a model of isostatic uplift, the islands became gradually isolated from the mainland between ca. 2000 to 1000 BP, i.e. during the same time that fire impact declined. Prior to that, both islands were part of a Pinus‐Betula forest landscape affected by fires from ca. 5800 to ca. 1500 BP. Thereafter fire influence ceased and the islands became more strongly characterized by late successional species, e.g. Picea. This change was associated with substantial humus accumulation. The decreased fire influence on these islands contrasts with the regional increase in fire influence during the last 1000 yr. Long‐term influence of wildfire is important in vegetation dynamics and humus accumulation and, thus, post‐glacial isostatic land uplift can indirectly have a substantial influence on ecosystem development. Consequently, this effect should be further considered in long‐time ecosystem studies of areas with large, non‐uniform land uplift such as those found in northern Fennoscandia and eastern Canada.  相似文献   
240.
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the conversion of phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline for the eventual synthesis of phosphatidylcholine (PC). The enzyme is regulated by reversible association with cellular membranes, with the rate of catalysis increasing following membrane association. Two isoforms of CCT appear to be present in higher eukaryotes, including Drosophila melanogaster, which contains the tandem genes Cct1 and Cct2. Before this study, the CCT1 isoform had not been characterized and the cellular location of each enzyme was unknown. In this investigation, the cDNA encoding the CCT1 isoform from D. melanogaster has been cloned and the recombinant enzyme purified and characterized to determine catalytic properties and the effect of lipid vesicles on activity. CCT1 exhibited a V max of 23904 nmol of CDP-choline min (-1) mg (-1) and apparent K m values for phosphocholine and CTP of 2.29 and 1.21 mM, respectively, in the presence of 20 muM PC/oleate vesicles. Cytidylyltransferases require a divalent cation for catalysis, and the cation preference of CCT1 was found to be as follows: Mg (2+) > Mn (2+) = Co (2+) > Ca (2+) = Ni (2+) > Zn (2+). The activity of the enzyme is stimulated by a variety of lipids, including phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, phosphatidylserine, diphosphatidylglycerol, and the fatty acid oleate. Phosphatidylethanolamine and phosphatidic acid, however, did not have a significant effect on CCT1 activity. The cellular location of both CCT1 and CCT2 isoforms was elucidated by expressing green fluorescent fusion proteins in cultured D. melanogaster Schneider 2 cells. CCT1 was identified as the nuclear isoform, while CCT2 is cytoplasmic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号