首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2609篇
  免费   220篇
  2829篇
  2024年   1篇
  2023年   15篇
  2022年   20篇
  2021年   63篇
  2020年   33篇
  2019年   44篇
  2018年   41篇
  2017年   59篇
  2016年   61篇
  2015年   143篇
  2014年   143篇
  2013年   160篇
  2012年   189篇
  2011年   198篇
  2010年   123篇
  2009年   108篇
  2008年   173篇
  2007年   194篇
  2006年   147篇
  2005年   161篇
  2004年   148篇
  2003年   140篇
  2002年   132篇
  2001年   32篇
  2000年   22篇
  1999年   34篇
  1998年   39篇
  1997年   24篇
  1996年   24篇
  1995年   23篇
  1994年   12篇
  1993年   17篇
  1992年   11篇
  1991年   14篇
  1990年   12篇
  1989年   6篇
  1988年   8篇
  1987年   5篇
  1986年   7篇
  1985年   9篇
  1984年   9篇
  1983年   1篇
  1982年   6篇
  1981年   6篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1966年   1篇
排序方式: 共有2829条查询结果,搜索用时 0 毫秒
71.
Bat fatality at wind energy facilities is a conservation issue, but its effect on bat populations is difficult to estimate. We have little understanding of wind turbine effects on bat population persistence, in part because we have poor knowledge of bat migration pathways and hence the source populations for individual fatalities. We used deuterium ratio analysis combined with genetic algorithm for rule-set prediction and the web-based isoscapes modeling, analysis, and prediction in a geographic information system environment as a novel approach. Our objectives were to explore the utility of these methods together and map the geographic extents of eastern red bat (Lasiurus borealis) specimens salvaged in 2008–2010 from a single, 92-km2 wind energy facility in Illinois, USA. Results indicate that combining these methods can be successful and support their use with species where ranges may be less well defined. Because of the migratory nature of this species and the range of deuterium values of pixels in our isotope model, we predicted that 18% and 82% of the specimens would have isotope results inside and outside of the wind facility's isocline respectively. We concluded that 71.4% of the specimens had isotope signatures placing them outside the wind facility's isocline. It could be argued that the wide distribution of bat fatalities dilutes the overall effect of those fatalities on the bat species; however, if other facilities show a similar pattern, each facility could have cumulative and far reaching population-level effects. © 2019 The Wildlife Society.  相似文献   
72.
Every chemosensory structure has a boundary layer surroundingit through which chemical signals must pass before contactingreceptor cells. Fluid motion in this boundary layer is slowand odor movement is mainly by diffusion. The boundary layerstructure depends upon external fluid velocities and the morphologyof the appendage. High-speed (10–200 Hz) electrochemicalrecordings from microchemical electrodes were used to quantifychemical transport in the microscale environment of three morphologicallydifferent chemosensory appendages of the lobster, Homarus americanus:lateral antennule, medial antennule and walking legs. Controlledpulses of the odor tracer (dopamine) were delivered to the threeappendages at three different flow speeds (0, 3, 6 cm/s). Theamplitudes of the pulses increased with increasing flow speed,indicating that boundary layer thickness decreased with increasingflow speed. Larger pulse amplitudes were measured in the walkinglegs than in the lateral or medial antennules at all flow speeds.In addition, larger amplitudes were recorded in the medial antennulethan the lateral antennule. Changes in pulse amplitude withincreasing flow speed were larger than changes in pulse duration.These results demonstrate that pulse amplitude is affected morethan pulse duration by boundary layer thickness and that themorphology of the receptor strucure helps determine the structureof signals arriving at receptor cells. This may explain whyanimals have adopted sampling strategies that reduce boundarylayer thickness.  相似文献   
73.
1. The main focus of this study was to investigate the effects of single and multiple moderate doses of lime (slaked lime, Ca(OH)2, and/or calcite, CaCO3) on eutrophic hardwater lakes. This information would contribute to strategies to manage phytoplankton and macrophyte biomass in eutrophic lakes.
2. Water chemistry and biota were monitored for up to 7 years after initial lime treatment and results were compared with reference systems.
3. Complementary studies investigated the effect of lime on macrophytes in ponds, irrigation canals and microcosm experiments.
4. When water pH was kept within its natural range (≤ 10), single and multiple lime applications to lakes and ponds controlled macrophyte biomass, without negatively affecting invertebrate communities.
5. Single lime treatments at moderate dosages of lakes and ponds resulted in variable and mostly temporary changes in chlorophyll a (chl a ) and phosphorus (P) concentration. Although sediment P release was reduced in single-dose lakes during the first winter following treatment, reductions appeared temporary.
6. Multiple treatments of lakes and ponds were effective at reducing both chl a and P concentrations over longer periods. Mean winter P release rate was also reduced after initial treatment.
7. In laboratory studies, sediment cores were incubated with eight different treatments to assess P release. Redox-sensitive treatments were no more effective at lowering total P concentration in overlying water than some redox-insensitive treatments. Lime reduced total P concentrations, but was not as effective as treatments with alum.
8. The use of lime in managing macrophyte and phytoplankton biomass in shallow, hardwater lakes and ponds may be preferable over other treatments, because lime is economical and non-toxic as long as pH is kept within a natural range.  相似文献   
74.
Brain I(A) and cardiac I(to) currents arise from complexes containing Kv4 voltage-gated potassium channels and cytoplasmic calcium-sensor proteins (KChIPs). Here, we present X-ray crystallographic and small-angle X-ray scattering data that show that the KChIP1-Kv4.3 N-terminal cytoplasmic domain complex is a cross-shaped octamer bearing two principal interaction sites. Site 1 comprises interactions between a unique Kv4 channel N-terminal hydrophobic segment and a hydrophobic pocket formed by displacement of the KChIP H10 helix. Site 2 comprises interactions between a T1 assembly domain loop and the KChIP H2 helix. Functional and biochemical studies indicate that site 1 influences channel trafficking, whereas site 2 affects channel gating, and that calcium binding is intimately linked to KChIP folding and complex formation. Together, the data resolve how Kv4 channels and KChIPs interact and provide a framework for understanding how KChIPs modulate Kv4 function.  相似文献   
75.
Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost‐effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population‐ and community‐level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate‐induced changes, which will inform effective management actions for promoting biodiversity resilience.  相似文献   
76.
The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Mitigation benefits through the use of forest products are affected by product life cycles, which determine the duration of carbon storage in wood products and substitution benefits where emissions are avoided using wood products instead of other emissions‐intensive building products and energy fuels. Here we determined displacement factors for wood substitution in the built environment and bioenergy at the national level in Canada. For solid wood products, we compiled a basket of end‐use products and determined the reduction in emissions for two functionally equivalent products: a more wood‐intensive product vs. a less wood‐intensive one. Avoided emissions for end‐use products basket were weighted by Canadian consumption statistics to reflect national wood uses, and avoided emissions were further partitioned into displacement factors for sawnwood and panels. We also examined two bioenergy feedstock scenarios (constant supply and constrained supply) to estimate displacement factors for bioenergy using an optimized selection of bioenergy facilities which maximized avoided emissions from fossil fuels. Results demonstrated that the average displacement factors were found to be similar: product displacement factors were 0.54 tC displaced per tC of used for sawnwood and 0.45 tC tC?1 for panels; energy displacement factors for the two feedstock scenarios were 0.47 tC tC?1 for the constant supply and 0.89 tC tC?1 for the constrained supply. However, there was a wide range of substitution impacts. The greatest avoided emissions occurred when wood was substituted for steel and concrete in buildings, and when bioenergy from heat facilities and/or combined heat and power facilities was substituted for energy from high‐emissions fossil fuels. We conclude that (1) national‐level substitution benefits need to be considered within a systems perspective on climate change mitigation to avoid the development of policies that deliver no net benefits to the atmosphere, (2) the use of long‐lived wood products in buildings to displace steel and concrete reduces GHG emissions, (3) the greatest bioenergy substitution benefits are achieved using a mix of facility types and capacities to displace emissions‐intensive fossil fuels.  相似文献   
77.
78.
79.
The kidney plays an important role in ion regulation in both freshwater and seawater fish. However, ion transport mechanisms in the teleost kidney are poorly understood, especially at the molecular level. We have cloned a kidney-specific SLC26 sulfate/anion exchanger from rainbow trout (Oncorhynchus mykiss) that is homologous to the mammalian SLC26A1 (Sat-1). Excretion of excess plasma sulfate concentration after Na2SO4 injection corresponded to significantly higher expression of the cloned SLC26A1 mRNA. Detailed morphological observation of rainbow trout renal tubules was also performed by light microscopy and transmission electron microscopy. According to the structure of brush border and tubular system in the cytoplasm, renal tubules of rainbow trout were classified into proximal tubule first and second (PI and PII) segments and distal tubules. In situ hybridization revealed that SLC26A1 anion exchanger mRNA is specifically localized in the PI segment of kidneys from both seawater- and freshwater-adapted rainbow trout. With immunocytochemistry, Na+-K+-ATPase and vacuolar-type H+-ATPase were colocalized to the same cells and distributed in the basolateral and the apical membranes, respectively, of the cells where the SLC26A1 mRNA expressed. These findings suggest that the cloned kidney-specific SLC26A1 is located in kidney proximal tubules and is involved in excretion of excess plasma sulfate in rainbow trout.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号