首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2600篇
  免费   221篇
  2024年   1篇
  2023年   15篇
  2022年   19篇
  2021年   63篇
  2020年   33篇
  2019年   44篇
  2018年   41篇
  2017年   59篇
  2016年   61篇
  2015年   143篇
  2014年   143篇
  2013年   160篇
  2012年   189篇
  2011年   197篇
  2010年   123篇
  2009年   108篇
  2008年   173篇
  2007年   193篇
  2006年   147篇
  2005年   161篇
  2004年   148篇
  2003年   139篇
  2002年   132篇
  2001年   32篇
  2000年   22篇
  1999年   34篇
  1998年   39篇
  1997年   24篇
  1996年   23篇
  1995年   23篇
  1994年   12篇
  1993年   17篇
  1992年   10篇
  1991年   13篇
  1990年   12篇
  1989年   6篇
  1988年   8篇
  1987年   5篇
  1986年   7篇
  1985年   9篇
  1984年   9篇
  1983年   1篇
  1982年   6篇
  1981年   6篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1966年   1篇
排序方式: 共有2821条查询结果,搜索用时 15 毫秒
121.
122.
123.
Novel peptide inhibitors of angiotensin-converting enzyme 2   总被引:23,自引:0,他引:23  
Angiotensin-converting enzyme 2 (ACE2), a recently identified human homolog of ACE, is a novel metallocarboxypeptidase with specificity, tissue distribution, and function distinct from those of ACE. ACE2 may play a unique role in the renin-angiotensin system and mediate cardiovascular and renal function. Here we report the discovery of ACE2 peptide inhibitors through selection of constrained peptide libraries displayed on phage. Six constrained peptide libraries were constructed and selected against FLAG-tagged ACE2 target. ACE2 peptide binders were identified and classified into five groups, based on their effects on ACE2 activity. Peptides from the first three classes exhibited none, weak, or moderate inhibition on ACE2. Peptides from the fourth class exhibited strong inhibition, with equilibrium inhibition constants (K(i) values) from 0.38 to 1.7 microm. Peptides from the fifth class exhibited very strong inhibition, with K(i) values < 0.14 microm. The most potent inhibitor, DX600, had a K(i) of 2.8 nm. Steady-state enzyme kinetic analysis showed that these potent ACE2 inhibitors exhibited a mixed competitive and non-competitive type of inhibition. They were not hydrolyzed by ACE2. Furthermore, they did not inhibit ACE activity, and thus were specific to ACE2. Finally, they also inhibited ACE2 activity toward its natural substrate angiotensin I, suggesting that they would be functional in vivo. As novel ACE2-specific peptide inhibitors, they should be useful in elucidation of ACE2 in vivo function, thus contributing to our better understanding of the biology of cardiovascular regulation. Our results also demonstrate that library selection by phage display technology can be a rapid and efficient way to discover potent and specific protease inhibitors.  相似文献   
124.
125.
Previously we found elevated beacon gene expression in the hypothalamus of obese Psammomys obesus. Beacon administration into the lateral ventricle of P. obesus stimulated food intake and body weight gain. In the current study we used yeast two-hybrid technology to screen for proteins in the human brain that interact with beacon. CLK4, an isoform of cdc2/cdc28-like kinase family of proteins, was identified as a strong interacting partner for beacon. Using active recombinant proteins and a surface plasmon resonance based detection technique, we demonstrated that the three members of this subfamily of kinases (CLK1, 2, and 4) all interact with beacon. Based on the known sequence and functional properties of beacon and CLKs, we speculate that beacon could either modulate the function of key regulatory molecules such as PTP1B or control the expression patterns of specific genes involved in the central regulation of energy metabolism.  相似文献   
126.
A hormonal servomechanism has been proposed to regulate differentiation and function of the endometrial glandular epithelium (GE) in the ovine uterus during pregnancy. This mechanism involves sequential actions of estrogen, progesterone, ovine interferon tau (IFNtau), placental lactogen (oPL), and placental growth hormone (oGH). The biological actions of oPL in vitro are mediated by homodimerization of the prolactin receptor (oPRLR) and heterodimerization of the oPRLR and oGH receptor. The objectives of the study were to determine the effects of intrauterine oPL, oGH, and their combination on endometrial histoarchitecture and gene expression and to localize and characterize binding sites for oPL in the ovine uterus in vivo using an in situ ligand binding assay. Intrauterine infusion of oPL and/or oGH following IFNtau into ovariectomized ewes treated with progesterone daily differentially affected endometrial gland number and expression of uterine milk proteins and osteopontin. However, neither hormone affected PRLR, insulin-like growth factor (IGF)-I, or IGF-II mRNA levels in the endometrium. A chimeric protein of placental secretory alkaline phosphatase (SEAP) and oPL was used to identify and characterize binding sites for oPL in frozen sections of interplacentomal endometrium from pregnant ewes. Specific binding of SEAP-oPL was detected in the endometrial GE on Days 30, 60, 90, and 120 of pregnancy. In Day 90 endometrium, SEAP-oPL binding to the endometrial GE was displaced completely by oPL and prolactin (oPRL) but only partially by oGH. Binding experiments using the extracellular domain of the oPRLR also showed that iodinated oPL binding sites could be competed for by oPRL and oPL but not by oGH. Collectively, results indicate that oPL binds to receptors in the endometrial glands and that oPRL is more effective than oGH in competing for these binding sites. Thus, effects of oPL on the endometrial glands may be mediated by receptors for oPRL and oGH.  相似文献   
127.
Hsieh WP  Chu TM  Wolfinger RD  Gibson G 《Genetics》2003,165(2):747-757
An emerging issue in evolutionary genetics is whether it is possible to use gene expression profiling to identify genes that are associated with morphological, physiological, or behavioral divergence between species and whether these genes have undergone positive selection. Some of these questions were addressed in a recent study (Enard et al. 2002) of the difference in gene expression among human, chimp, and orangutan, which suggested an accelerated rate of divergence in gene expression in the human brain relative to liver. Reanalysis of the Affymetrix data set using analysis of variance methods to quantify the contributions of individuals and species to variation in expression of 12,600 genes indicates that as much as one-quarter of the genome shows divergent expression between primate species at the 5% level. The magnitude of fold change ranges from 1.2-fold up to 8-fold. Similar conclusions apply to reanalysis of Enard et al. 2002 parallel murine data set. However, biases inherent to short oligonucleotide microarray technology may account for some of the tissue and species effects. At high significance levels, more differences were observed in the liver than in the brain in each of the pairwise species comparisons, so it is not clear that expression divergence is accelerated in the human brain. Further, there is an apparent bias toward upregulation of gene expression in the brain in both primates and mice, whereas genes are equally likely to be up- or downregulated in the liver when these species diverge. A small subset of genes that are candidates for adaptive divergence may be identified on the basis of a high ratio of interspecific to intraspecific divergence.  相似文献   
128.
Relapsing-fever spirochetes achieve high cell densities (>10(8)/ml) in their host's blood, while Lyme disease spirochetes do not (<10(5)/ml). This striking contrast in pathogenicity of these two groups of bacteria suggests a fundamental difference in their ability to either exploit or survive in blood. Borrelia hermsii, a tick-borne relapsing-fever spirochete, contains orthologs to glpQ and glpT, genes that encode glycerophosphodiester phosphodiesterase (GlpQ) and glycerol-3-phosphate transporter (GlpT), respectively. In other bacteria, GlpQ hydrolyzes deacylated phospholipids to glycerol-3-phosphate (G3P) while GlpT transports G3P into the cytoplasm. Enzyme assays on 17 isolates of borreliae demonstrated GlpQ activity in relapsing-fever spirochetes but not in Lyme disease spirochetes. Southern blots demonstrated glpQ and glpT in all relapsing-fever spirochetes but not in the Lyme disease group. A Lyme disease spirochete, Borrelia burgdorferi, that was transformed with a shuttle vector containing glpTQ from B. hermsii produced active enzyme, which demonstrated the association of glpQ with the hydrolysis of phospholipids. Sequence analysis of B. hermsii identified glpF, glpK, and glpA, which encode the glycerol facilitator, glycerol kinase, and glycerol-3-phosphate dehydrogenase, respectively, all of which are present in B. burgdorferi. All spirochetes examined had gpsA, which encodes the enzyme that reduces dihydroxyacetone phosphate (DHAP) to G3P. Consequently, three pathways for the acquisition of G3P exist among borreliae: (i) hydrolysis of deacylated phospholipids, (ii) reduction of DHAP, and (iii) uptake and phosphorylation of glycerol. The unique ability of relapsing-fever spirochetes to hydrolyze phospholipids may contribute to their higher cell densities in blood than those of Lyme disease spirochetes.  相似文献   
129.
Meprin A and B, metalloproteases consisting of evolutionarily related alpha and/or beta subunits, are membrane-bound and secreted enzymes expressed by kidney and intestinal epithelial cells, leukocytes, and cancer cells. Previous work established that the multidomain meprin subunits (each approximately 80 kDa) form disulfide-bridged homo- and heterodimers, and differ in substrate and peptide bond specificities. The work herein clearly demonstrates that meprin dimers differ markedly in their ability to oligomerize. Electrophoresis, light scattering, size exclusion chromatography, and electron microscopy were used to characterize quaternary structures of recombinant rat meprins. Meprin B, consisting of meprin beta subunits only, was dimeric under a wide range of conditions. By contrast, meprin alpha homodimers formed heterogeneous multimers (ring-, circle-, spiral-, and tube-like structures) containing up to 100 subunits, with molecular masses at protein peaks ranging from approximately 1.0 to 6.0 MDa. The size of the meprin alpha homo-oligomers was dependent on protein concentration, ionic strength, and activation state. Meprin alphabeta heterodimers tended to form tetramers but not higher oligomers. Thus, the presence of meprin beta, which has a transmembrane domain in vivo, restricts the oligomerization potential of meprin molecules and localizes meprins to the plasma membrane. By contrast, the propensity of secreted meprin alpha homodimers to self-associate concentrates proteolytic potential into high molecular mass multimers and thus allows for autocompartmentalization. The work indicates that different mechanisms exist to localize and concentrate the proteolytic activity of membrane-bound and secreted meprin metalloproteinases.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号