首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   661篇
  免费   95篇
  756篇
  2021年   6篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   7篇
  2016年   14篇
  2015年   13篇
  2014年   14篇
  2013年   31篇
  2012年   33篇
  2011年   24篇
  2010年   29篇
  2009年   16篇
  2008年   32篇
  2007年   29篇
  2006年   23篇
  2005年   25篇
  2004年   26篇
  2003年   32篇
  2002年   29篇
  2001年   28篇
  2000年   23篇
  1999年   19篇
  1998年   13篇
  1997年   14篇
  1996年   6篇
  1995年   7篇
  1994年   9篇
  1993年   5篇
  1992年   15篇
  1991年   17篇
  1990年   16篇
  1989年   12篇
  1988年   16篇
  1987年   8篇
  1986年   14篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   8篇
  1980年   4篇
  1979年   7篇
  1978年   9篇
  1977年   6篇
  1976年   8篇
  1974年   10篇
  1973年   7篇
  1972年   4篇
  1971年   6篇
  1966年   6篇
排序方式: 共有756条查询结果,搜索用时 15 毫秒
141.
The mechanism of uptake of benzoic and 2,4-dichlorobenzoic acid (2,4-DCBA) by Alcaligenes denitrificans BRI 3010 and BRI 6011 and Pseudomonas sp. strain B13, three organisms capable of degrading various isomers of chlorinated benzoic acids, was investigated. In all three organisms, uptake of benzoic acid was inducible. For benzoic acid uptake into BRI 3010, monophasic saturation kinetics with apparent K(infm) and V(infmax) values of 1.4 (mu)M and 3.2 nmol/min/mg of cell dry weight, respectively, were obtained. For BRI 6011, biphasic saturation kinetics were observed, suggesting the presence of two uptake systems for benzoic acid with distinct K(infm) (0.72 and 5.3 (mu)M) and V(infmax) (3.3 and 4.6 nmol/min/mg of cell dry weight) values. BRI 3010 and BRI 6011 accumulated benzoic acid against a concentration gradient by a factor of 8 and 10, respectively. A wide range of structural analogs, at 50-fold excess concentrations, inhibited benzoic acid uptake by BRI 3010 and BRI 6011, whereas with B13, only 3-chlorobenzoic acid was an effective inhibitor. For BRI 3010 and BRI 6011, the inhibition by the structural analogs was not of a competitive nature. Uptake of benzoic acid by BRI 3010 and BRI 6011 was inhibited by KCN, by the protonophore 3,5,3(prm1), 4(prm1)-tetrachlorosalicylanilide (TCS), and, for BRI 6011, by anaerobiosis unless nitrate was present, thus indicating that energy was required for the uptake process. Uptake of 2,4-DCBA by BRI 6011 was constitutive and saturation uptake kinetics were not observed. Uptake of 2,4-DCBA by BRI 6011 was inhibited by KCN, TCS, and anaerobiosis even if nitrate was present, but the compound was not accumulated intracellularly against a concentration gradient. Uptake of 2,4-DCBA by BRI 6011 appears to occur by passive diffusion into the cell down its concentration gradient, which is maintained by the intracellular metabolism of the compound. This process could play an important role in the degradation of xenobiotic compounds by microorganisms.  相似文献   
142.
The ubiquitous Fer protein-tyrosine kinase has been proposed to regulate diverse processes such as cell growth, cell adhesion, and neurite outgrowth. To gain insight into the biological function of Fer, we have targeted the fer locus with a kinase-inactivating missense mutation (fer(D743R)). Mice homozygous for this mutation develop normally, have no overt phenotypic differences from wild-type mice, and are fertile. Since these mice lack both Fer and the testis-specific FerT kinase activities, these proteins are clearly not essential for development and survival. No differences were observed in overall cellularity of bone marrow, spleen, or thymus in the absence of Fer activity. While most platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation was unchanged in fer(D743R) homozygous embryonic fibroblasts, cortactin phosphorylation was reduced. However, Fer kinase activity was not required for PDGF-induced Stat3, p120(ctn), or epidermal growth factor (EGF)-induced beta-catenin phosphorylation. Also, no defects were observed in changes to the actin cytoskeleton, adherens junctions, or focal adhesions in PDGF- or EGF-stimulated fer(D743R) homozygous embryonic fibroblasts. Therefore, Fer likely serves a redundant role in regulating cell growth, cell adhesion, retinal development, and spermatogenesis but is required for efficient phosphorylation of cortactin.  相似文献   
143.
Resistance to conventional anticancer therapies in patients with advanced solid tumors has prompted the need of alternative cancer therapies. Moreover, the success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity to normal tissues. Several decades after Coley's work a variety of natural and genetically modified non-pathogenic bacterial species are being explored as potential antitumor agents, either to provide direct tumoricidal effects or to deliver tumoricidal molecules. Live, attenuated or genetically modified non-pathogenic bacterial species are capable of multiplying selectively in tumors and inhibiting their growth. Due to their selectivity for tumor tissues, these bacteria and their spores also serve as ideal vectors for delivering therapeutic proteins to tumors. Bacterial toxins too have emerged as promising cancer treatment strategy. The most potential and promising strategy is bacteria based gene-directed enzyme prodrug therapy. Although it has shown successful results in vivo yet further investigation about the targeting mechanisms of the bacteria are required to make it a complete therapeutic approach in cancer treatment.  相似文献   
144.
145.
Total community DNA from 29 noncontaminated soils and soils impacted by petroleum hydrocarbons and chloro-organics from Antarctica and Brazil were screened for the presence of nine catabolic genes, encoding alkane monooxygenase or aromatic dioxygenases, from known bacterial biodegradation pathways. Specific primers and probes targeting alkane monooxygenase genes were derived from Pseudomonas putida ATCC 29347 (Pp alkB), Rhodococcus sp. strain Q15 (Rh alkB1, Rh alkB2), and Acinetobacter sp. ADP-1 (Ac alkM). In addition, primers and probes detecting aromatic dioxygenase genes were derived from P. putida ATCC 17484 (ndoB), P. putida F1 (todC1), P. putida ATCC 33015 (xylE and cat23), and P. pseudoalcaligenes KF707 (bphA). The primers and probes were used to analyze total community DNA extracts by using PCR and hybridization analysis. All the catabolic genes, except the Ac alkM, were detected in contaminated and control soils from both geographic regions, with a higher frequency in the Antarctic soils. The alkane monooxygenase genes, Rh alkB1 and Rh alkB2, were the most frequently detected alk genes in both regions, while Pp alkB was not detected in Brazil soils. Genes encoding the aromatic dioxygenases toluene dioxygenase (todC1) and biphenyl dioxygenase (bphA) were the most frequently detected in Antarctica, and todC1 and catechol-2,3-dioxygenase (cat23) were the most frequent in Brazil soils. Hybridization analysis confirmed the PCR results, indicating that the probes used had a high degree of homology to the genes detected in the soil extracts and were effective in detecting biodegradative potential in the indigenous microbial population.  相似文献   
146.
Vesicular transporters are required for the storage of?all classical and amino acid neurotransmitters in synaptic vesicles. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male's position during copulation that is rescued by expression in KCs. Because prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning.  相似文献   
147.
Dishevelled (Dvl) proteins are important signaling components of both the canonical β-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3 −/− mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3 −/− and LtapLp/+ mutants, Dvl3 +/−;LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant.  相似文献   
148.
Chronic kidney disease (CKD) often culminates in renal failure as a consequence of progressive interstitial fibrosis and is an important cause of illness and death in dogs. Identification of disease biomarkers and gene expression changes will yield valuable information regarding the specific biological pathways involved in disease progression. Toward these goals, gene expression changes in the renal cortex of dogs with X-linked Alport syndrome (XLAS) were examined using microarray technology. Extensive changes in inflammatory, metabolic, immune, and extracellular matrix biology were revealed in affected dogs. Statistical analysis showed 133 genes that were robustly induced or repressed in affected animals relative to age-matched littermates. Altered expression of numerous major histocompatibility complex (MHC) molecules suggests that the immune system plays a significant role in XLAS. Increased expression of COL4A1 and TIMP-1 at the end stage of disease supports the suggestion that expression increases in association with progression of fibrosis and confirms an observation of increased COL4A1 protein expression. Clusterin may function as one of the primary defenses of the renal cortex against progressive injury in dogs with XLAS, as demonstrated here by increased CLU gene expression. Cellular mechanisms that function during excess oxidative stress might also act to deter renal damage, as evidenced by alterations in gene expression of SOD1, ACO1, FDXR, and GPX1. This investigation provides a better understanding of interstitial fibrosis pathogenesis, and potential biomarkers for early detection, factors that are essential to discovering more effective treatments thereby reducing clinical illness and death due to CKD.  相似文献   
149.
150.
We monitored rates of degradation of soluble and sorbed 2,4-dichlorophenoxyacetic acid (2,4-D) in low-organic-matter soil at field capacity amended with 1, 10, or 100 micrograms of 2,4-D per g of wet soil and inoculated with one of two bacterial strains (MI and 155) with similar maximum growth rates (mu max) but significantly different half-saturation growth constants (Ks). Concentrations of soluble 2,4-D were determined by analyzing samples of pore water pressed from soil, and concentrations of sorbed 2,4-D were determined by solvent extraction. Between 65 and 75% of the total 2,4-D was present in the soluble phase at equilibrium, resulting in soil solution concentrations of ca. 8, 60, and 600 micrograms of 2,4-D per ml, respectively. Soluble 2,4-D was metabolized preferentially; this was followed by degradation of both sorbed (after desorption) and soluble 2,4-D. Rates of degradation were comparable for the two strains at soil concentrations of 10 and 100 micrograms of 2,4-D per g; however, at 1 microgram/g of soil, 2,4-D was metabolized more rapidly by the strain with the lower Ks value (strain MI). We also monitored rates of biodegradation of soluble and sorbed 2,4-D in high-organic-matter soil at field capacity amended with 100 micrograms of 2,4-D per g of wet soil and inoculated with the low-Ks strain (strain MI). Ten percent of total 2,4-D was present in the soluble phase, resulting in a soil solution concentration of ca. 30 micrograms of 2,4-D per ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号