首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   29篇
  254篇
  2023年   2篇
  2019年   2篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   10篇
  2011年   6篇
  2010年   9篇
  2009年   4篇
  2008年   6篇
  2007年   7篇
  2006年   12篇
  2005年   7篇
  2004年   15篇
  2003年   10篇
  2002年   10篇
  2001年   5篇
  2000年   6篇
  1999年   9篇
  1998年   5篇
  1996年   4篇
  1995年   3篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   10篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1970年   3篇
  1969年   1篇
  1968年   2篇
  1965年   1篇
  1963年   2篇
  1960年   2篇
  1953年   1篇
排序方式: 共有254条查询结果,搜索用时 24 毫秒
41.
Transforming growth factor beta1 (TGFbeta1), an important regulator of cell behavior, is secreted as a large latent complex (LLC) in which it is bound to its cleaved prodomain (latency-associated peptide [LAP]) and, via LAP, to latent TGFbeta-binding proteins (LTBPs). The latter target LLCs to the extracellular matrix (ECM). Bone morphogenetic protein 1 (BMP1)-like metalloproteinases play key roles in ECM formation, by converting precursors into mature functional proteins, and in morphogenetic patterning, by cleaving the antagonist Chordin to activate BMP2/4. We provide in vitro and in vivo evidence that BMP1 cleaves LTBP1 at two specific sites, thus liberating LLC from ECM and resulting in consequent activation of TGFbeta1 via cleavage of LAP by non-BMP1-like proteinases. In mouse embryo fibroblasts, LAP cleavage is shown to be predominantly matrix metalloproteinase 2 dependent. TGFbeta1 is a potent inducer of ECM formation and of BMP1 expression. Thus, a role for BMP1-like proteinases in TGFbeta1 activation completes a novel fast-forward loop in vertebrate tissue remodeling.  相似文献   
42.
Bone morphogenetic protein 1 (BMP1) is the prototype of a subgroup of metalloproteinases with manifold roles in morphogenesis. Four mammalian subgroup members exist, including BMP1 and mammalian Tolloid-like 1 (mTLL1). Subgroup members have a conserved protein domain structure: an NH2-terminal astacin-like protease domain, followed by a fixed order of CUB and epidermal growth factor-like protein-protein interaction motifs. Previous structure/function studies have documented those BMP1 protein domains necessary for secretion, and activity against various substrates. Here we demonstrate that, in contradiction to previous reports, the most NH2-terminal CUB domain (CUB1) is not required for BMP1 secretion nor is the next CUB domain (CUB2) required for enzymatic activity. The same is true for mTLL1. In fact, secreted protease domains of BMP1 and mTLL1, devoid of CUB or epidermal growth factor-like domains, have procollagen C-proteinase (pCP) activity and activity for biosynthetic processing of biglycan, the latter with kinetics superior to those of the full-length proteins. Structure-function analyses herein also suggest differences in the functional roles played by some of the homologous domains in BMP1 and mTLL1. Surprisingly, although BMP1 has long been known to be Ca2+-dependent, a property previously assumed to apply to all members of the subgroup, mTLL1 is demonstrated to be independent of Ca2 levels in its ability to cleave some, but not all, substrates. We also show that pCP activities of only versions of BMP1 and mTLL1 with intact COOH termini are enhanced by the procollagen C-proteinase enhancer 1 (PCOLCE1) and that mTLL1 binds PCOLCE1, thus suggesting reappraisal of the accepted paradigm for how PCOLCE1 enhances pCP activities.  相似文献   
43.
Greenspan G  Geiger D 《Genetics》2006,172(4):2583-2599
Models of background variation in genomic regions form the basis of linkage disequilibrium mapping methods. In this work we analyze a background model that groups SNPs into haplotype blocks and represents the dependencies between blocks by a Markov chain. We develop an error measure to compare the performance of this model against the common model that assumes that blocks are independent. By examining data from the International Haplotype Mapping project, we show how the Markov model over haplotype blocks is most accurate when representing blocks in strong linkage disequilibrium. This contrasts with the independent model, which is rendered less accurate by linkage disequilibrium. We provide a theoretical explanation for this surprising property of the Markov model and relate its behavior to allele diversity.  相似文献   
44.
45.
Seed and leaf extracts ofMammea americana (mamey apple) have a historical use as a biopesticide with the active components previously characterized. We reexamined the utility of this natural bioinsecticide in light of existing sources of material as a by-product of the fruit processing industry. Our results addDiabrotica virgifera virgifera andTrichoplusia ni to the list of insects which are susceptible to the insecticidal ingredients ofM. americana and confirms earlier reports of activity againstBlatella germanica, Periplaneta americana, andPlutella xylostella. We report LD5Os for crude hexane extracts ofM. americana leaves and seeds againstT. ni. These materials represent renewable sources of bioinsecticides for agriculture, and should regenerate interest in coumarin-type compounds for novel pesticidal action.  相似文献   
46.
While matching for MHC Ags improves renal allograft survival, closely matched grafts sometimes fail due to rejection, and poorly matched allografts are often well tolerated by the recipient. The severity of the rejection process may partially depend on the presence of environmentally primed T cells in the recipient that cross-react with donor Ags. To test for the presence of primed, donor-specific T cells in humans before transplantation, we used an enzyme-linked immunospot assay for detection of allospecific cytokines produced by individual human PBLs. We demonstrate that this approach detects cytokine production at single cell resolution and detects production of IFN-gamma only when there is defined immunologic priming, thus representing a measure of primed donor-specific immunity. Because the environmental Ag exposure of the recipient is not a function of the HLA mismatch between donor and potential recipient, the number of HLA mismatches may not correlate with the frequency of pretransplant, donor-specific IFN-gamma-producing PBLs. Studies of donor-specific IFN-gamma-producing lymphocytes in a cohort of patients being evaluated for renal transplantation corroborated this hypothesis. Moreover, for recipients of both living and cadaver renal allografts, the pretransplant frequency of donor-specific memory cells correlated with the posttransplant risk of developing acute rejection episodes. This improved ability to define the strength of the allospecific immune response by enzyme-linked immunospot assay may allow improved pairing of recipients with donors and identification of kidney allograft donor-recipient pairs at high risk for acute rejection, thus permitting targeted interventions aimed at prolonging graft survival.  相似文献   
47.
48.
The cytoplasmic N-terminal domain of connexins has been implicated in multiple aspects of gap junction function, including connexin trafficking/assembly and channel gating. A synthetic peptide corresponding to the first 23 amino acids of human connexin37 was prepared, and circular dichroism and nuclear magnetic resonance studies showed that this N-terminal peptide was predominantly α-helical between glycine 5 and glutamate 16. The importance of this structure for localization of the protein at appositional membranes and channel function was tested by expression of site-directed mutants of connexin37 in which amino acids leucine 10 and glutamine 15 were replaced with prolines or alanines. Wild type connexin37 and both substitution mutants localized to appositional membranes between transfected HeLa cells. The proline mutant did not allow intercellular transfer of microinjected neurobiotin; the alanine mutant allowed transfer, but less extensively than wild type connexin37. When expressed alone in Xenopus oocytes, wild type connexin37 produced hemichannel currents, but neither of the double substitution mutants produced detectable currents. The proline mutant (but not the alanine mutant) inhibited co-expressed wild type connexin37. Taken together, our data suggest that the α-helical structure of the connexin37 N terminus may be dispensable for protein localization, but it is required for channel and hemichannel function.Gap junction channels allow intercellular passage of ions and small molecules up to 1000 Da. They are oligomeric assemblies of members of a family of related proteins called connexins (CX)2 (reviewed in Ref. 1). Six connexin monomers assemble to form a hemichannel or connexon (Fig. 1, top panel), which, in turn, forms a complete gap junction channel by docking with a hemichannel from an adjacent cell. Based on sequence similarities, connexins have been separated into subfamilies designated by Greek characters (2, 3). The majority of connexins are members of the α- and β-subfamilies. Connexin polypeptides span the plasma membrane four times and have three cytoplasmic regions: the N terminus (NT), a cytoplasmic loop between the second and third transmembrane domains, and the C terminus (Fig. 1, middle panel). Structural studies of gap junctions have revealed that each hemichannel contains a ring of 24 transmembrane spanning helices (4, 5). Most topological models suggest that the NT of α-subfamily connexins contains 23 amino acids (illustrated for connexin37, CX37, in Fig. 1, bottom panel) and that of β-subfamily connexins contains 22 amino acids.Open in a separate windowFIGURE 1.Diagrams depicting the relationships between a gap junction hemichannel (top), the connexin polypeptide (middle), and the amino acid sequence of the CX37 N-terminal domain (bottom). Thick vertical lines represent the boundaries of the plasma membrane; the intracellular and extracellular spaces are indicated. The transmembrane (M1–M4), extracellular (E1 and E2), and cytoplasmic (NT, N terminus; CL, cytoplasmic loop; and CT, C terminus) domains within a connexin are indicated.The importance of the connexin NT has been emphasized by the identification of a number of connexin mutants that cause amino acid substitutions within this region and are linked to diseases including sensorineural deafness (CX26, CX30, and CX31), Charcot-Marie-Tooth disease (CX32), oculodentodigital dysplasia (CX43), and congenital cataracts (CX46 and CX50). Among the disease-linked mutants that have been studied, some show impaired protein trafficking to the cell surface, whereas others traffic properly, but show loss or alterations of channel function (616). Heterologous expression of site-directed mutants and chimeric connexins has demonstrated the influence of NT amino acids upon channel properties, including transjunctional voltage (Vj)-dependent gating, unitary conductance, permeability, and sensitivity to regulation by polyamines (1722). Lagree et al. (23) have provided evidence that the NT influences the compatibility of connexin hetero-oligomerization.The structure of the NT domain of a β-group connexin, Cx26, has been investigated through circular dichroism (CD) and nuclear magnetic resonance (NMR) of a synthetic peptide corresponding to part of the predicted CX26NT (24, 25). Based on their data, Purnick et al. (24) proposed a model for the NT of CX26 with an α-helix extending from position 1 to 10 and a critical bend at positions 11 and 12 that was suggested to act as a “hinge” allowing the first 10 amino acids to swing into the pore and block the channel. Oshima et al. (5) have published structural studies of a “permeability” mutant (M34A) of CX26 (26) showing a density within the pore of the channel that they suggested might represent a bundle of N termini acting as a “plug” to close the channel.We have been studying CX37, an α-group connexin that is expressed in endothelial cells (27), which may be important for development of atherosclerotic disease (28) and that can form large conductance channels and hemichannels (27, 29). We have shown that as much as half the length of the CX37NT can be deleted without affecting formation of gap junction plaques, but a full-length N terminus is required for hemichannel gating and intercellular communication (30). These observations suggested that the CX37NT may have a structure that is required for function. Therefore, the present experiments were designed to determine the structure of the NT of CX37 and the importance of that structure for protein localization and formation of functional channels and hemichannels. Differences between our data and those previously reported in studies of CX26 suggest that the structure of the NT in α-group connexins may differ from that in β-group connexins.  相似文献   
49.
Many secreted proteins are synthesized as precursors with propeptides that must be cleaved to yield the mature functional form of the molecule. In addition, various growth factors occur in extracellular latent complexes with protein antagonists and are activated upon cleavage of such antagonists. Research in the separate fields of embryonic patterning and extracellular matrix formation has identified members of the BMP1/Tolloid-like family of metalloproteinases as key players in these types of biosynthetic processing events in species ranging from Drosophila to humans.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号