首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1733篇
  免费   212篇
  1945篇
  2021年   24篇
  2018年   14篇
  2016年   26篇
  2015年   39篇
  2014年   41篇
  2013年   55篇
  2012年   84篇
  2011年   63篇
  2010年   43篇
  2009年   37篇
  2008年   61篇
  2007年   71篇
  2006年   59篇
  2005年   61篇
  2004年   66篇
  2003年   66篇
  2002年   54篇
  2001年   46篇
  2000年   56篇
  1999年   40篇
  1998年   24篇
  1997年   18篇
  1996年   23篇
  1995年   18篇
  1994年   21篇
  1993年   29篇
  1992年   36篇
  1991年   44篇
  1990年   33篇
  1989年   43篇
  1988年   27篇
  1987年   45篇
  1986年   45篇
  1985年   45篇
  1984年   32篇
  1983年   25篇
  1982年   20篇
  1981年   16篇
  1980年   21篇
  1979年   23篇
  1978年   18篇
  1977年   22篇
  1976年   24篇
  1975年   39篇
  1974年   24篇
  1973年   14篇
  1972年   16篇
  1970年   15篇
  1969年   16篇
  1967年   13篇
排序方式: 共有1945条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
35.
The RsrI endonuclease, a type-II restriction endonuclease (ENase) found in Rhodobacter sphaeroides, is an isoschizomer of the EcoRI ENase. A clone containing an 11-kb BamHI fragment was isolated from an R. sphaeroides genomic DNA library by hybridization with synthetic oligodeoxyribonucleotide probes based on the N-terminal amino acid (aa) sequence of RsrI. Extracts of E. coli containing a subclone of the 11-kb fragment display RsrI activity. Nucleotide sequence analysis reveals an 831-bp open reading frame encoding a polypeptide of 277 aa. A 50% identity exists within a 266-aa overlap between the deduced aa sequences of RsrI and EcoRI. Regions of 75-100% aa sequence identity correspond to key structural and functional regions of EcoRI. The type-II ENases have many common properties, and a common origin might have been expected. Nevertheless, this is the first demonstration of aa sequence similarity between ENases produced by different organisms.  相似文献   
36.
Peripherin, a recently described member of the intermediate filament multigene family, is present in peripheral and certain central nervous system neurons as well as in cultured neuron-like cell lines, including PC12 pheochromocytoma cells. In PC12 cells, peripherin appears to be the major intermediate filament protein and its relative levels and synthesis are specifically increased during nerve growth factor (NGF)-promoted neuronal differentiation. The present study examines the phosphorylation of peripherin and the regulation thereof by nerve growth factor and other agents in cultured PC12 cells. Immunoblotting experiments using a peripherin-specific antiserum show five distinct isoforms of this protein in whole cell and cytoskeletal extracts resolved by two-dimensional isoelectric focusing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three of these isoforms incorporate detectable quantities of [32P]phosphate during metabolic radiolabeling. The small proportion (approximately 6%) of total cellular peripherin that is extractable with 1% Triton X-100, does not appear to incorporate phosphate. NGF increases peripherin phosphorylation by 2-3-fold within 1-2 h of treatment. Epidermal growth factor and insulin have no effect. The relative levels of phosphorylated peripherin are markedly elevated (17-fold) by long term NGF exposure, and peripherin becomes a major cytoskeletal phosphoprotein. Activators of protein kinases A and C and treatment with depolarizing levels of K+ also enhance peripherin phosphorylation by 2-3-fold, in cultures both with and without prior long term NGF treatment. Evidence is presented that NGF regulates peripherin phosphorylation by a mechanism independent of protein kinases A and C and of depolarization. The large increase in phosphorylated peripherin brought about by NGF treatment suggests that this neuronal filament protein may play a role in the elaboration and maintenance of neurites. The presence of multiple independent pathways that acutely enhance peripherin phosphorylation indicates that this role is subject to modulation by extrinsic signals.  相似文献   
37.
38.
Summary Selection of spontaneous mutants ofNocardia lactamdurans MA2908 for resistance to 5-fluorouracil results in the simultaneous development of resistance to 5-fluorouridine. The resulting mutants fall into four distinct classes based on the amount of uracil accumulating in fermentation broths. An additional characteristic of these mutants is a reduction in the ability to incorporate exogenous uracil into nucleic acids even though transport and conversion to the nucleotide level appears normal. Finally, production of efrotomycin is increased in these mutants in both chemically defined and complex fermentation media to levels equivalent to those of MA4820, the first productivity mutant isolated in a conventional strain improvement program. Resistance development and uracil excretion are adequately explained by an elevation of the intracellular uridine nucleotide pool, in particular UMP. The role of the uridine necleotides in the efrotomycin fermentation is unknown.  相似文献   
39.
Summary The cellular retinoic acid-binding proteins (CRABPs) are thought to modulate the responsiveness of cells to retinoic acid (RA). We have previously shown that primary cultures of murine embryonic palate mesenchymal (MEPM) cells express both CRABP-I and CRABP-II genes and that this expression is regulated by RA and transforming growth factor β (TGF-β). These cells also express high levels of TGF-β3, which is also regulated by RA and TGF-β. We have used an antisense strategy to investigate the role of the CRABPs in retinoid-induced gene expression. Subconfluent cultures of MEPM cells were treated for several days with phosphorothioate modified 18-mer oligonucleotides antisense to CRABP-I or CRABP-II and then with all-trans-retinoic acid at a concentration of 3.3 μM or 0.33 μM for 5 or 22 h. Total RNA was then extracted and the expression of TGF-β3, retinoic acid receptor β (RAR-β), and tenascin was assessed by northern blot analysis. Antisense oligonucleotides to CRABP-I partially inhibited the RA-induced TGF-β3, RAR-β, and tenascin mRNA expression. The corresponding mis-sense oligonucleotides were without effect. Antisense oligonucleotides to CRABP-II also partially inhibited RA-induced expression of these genes. As with the CRABP-I antisense, mis-sense oligonucleotides to CRABP-II had no effect. These data suggest that both CRABPs modulate the responsiveness of MEPM cells to retinoic acid. Inhibition of endogenous CRABP expression renders MEPM cells less responsive to RA with respect to induction of TGF-β3, RAR-β, and tenascin gene expression. These results have important implications for our understanding of the role of the CRABPs in retinoid teratology.  相似文献   
40.
Morphogenesis in the yeast Saccharomyes cerevisiae consists primarily of bud formation. Certain cell division cycle (CDC) genes, CDC3, CDC10, CDC11, CDC12, are known to be involved in events critical to the pattern of bud growth and the completion of cytokinesis. Their products are associated with the formation of a ring of neck filaments that forms at the region of the mother cell-bud junction during mitosis. Morphogenesis in Candida albicans, a major fungal pathogen of humans, consists of both budding and the formation of hyphae. The latter is thought to be related to the pathogenesis and invasiveness of C. albicans. We have isolated and characterized C. albicans homologs of the S. cerevisiae CDC3 and CDC10 genes. Both C. albicans genes are capable of complementing defects in the respective S. cerevisiae genes. RNA analysis of one of the genes suggests that it is a regulated gene, with higher overall expression levels during the hyphal phase than in the yeast phase. Not surprisingly, DNA sequence analysis reveals that the proteins share extensive homology at the amino acid level with their respective S. cerevisiae counterparts. Related genes are also found in other species of Candida and, more importantly, in filamentous fungi such as Aspergillus nidulans and Neurospora crassa. A database search revealed significant sequence similarity with two peptides, one from Drosophila and one from mouse, suggesting strong evolutionary conservation of function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号