首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2094篇
  免费   134篇
  国内免费   1篇
  2023年   9篇
  2022年   30篇
  2021年   68篇
  2020年   40篇
  2019年   75篇
  2018年   67篇
  2017年   62篇
  2016年   89篇
  2015年   125篇
  2014年   151篇
  2013年   161篇
  2012年   174篇
  2011年   136篇
  2010年   94篇
  2009年   79篇
  2008年   108篇
  2007年   96篇
  2006年   103篇
  2005年   85篇
  2004年   65篇
  2003年   55篇
  2002年   56篇
  2001年   43篇
  2000年   45篇
  1999年   34篇
  1998年   23篇
  1997年   20篇
  1996年   15篇
  1995年   10篇
  1994年   10篇
  1993年   5篇
  1992年   6篇
  1991年   17篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1985年   3篇
  1984年   6篇
  1983年   4篇
  1981年   4篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1974年   4篇
  1972年   2篇
  1970年   5篇
  1969年   2篇
  1968年   2篇
排序方式: 共有2229条查询结果,搜索用时 31 毫秒
961.
Tertiary sulfonamidomethyl esters of benzylpenicillin (4) were synthesised and evaluated as a new class of potential prodrugs for beta-lactam antibiotics. Their hydrolysis in aqueous buffers was studied by HPLC and reveal a U-shaped pH rate profile with a pH-independent process extending from ca. pH 2 to ca. pH 10. This pathway is characterised by kinetic data that are consistent with a unimolecular mechanism involving rate-limiting iminium ion formation and penicillinoate expulsion. Benzylpenicillin and the corresponding sulfonamide are the ultimate products detected and isolated, indicating that beta-lactam ring opening is much slower than ester hydrolysis. As expected from the high reactivity, benzylpenicillin esters (4) displayed similar in vitro antibacterial activity to benzylpenicillin itself. Compared to the benzylpenicillin derivatives, sulfonamidomethyl esters of benzoic, clofibric and valproic acids display a much higher stability, giving rise to a Br?nsted beta1g value of -0.96 and suggesting that tertiary sulfonamidomethyl esters may be useful prodrugs for carboxylic acid drugs with pKa > 4.  相似文献   
962.
Bladder cancer is the fifth most common malignancy in the world and represents the second most common cause of death among genitourinary tumors. Current prognostic parameters such as grade and stage cannot predict with certainty the long-term outcome of bladder cancer, and as a result there is a pressing need to identify markers that may predict tumor behavior. Earlier we identified the adipocyte fatty acid-binding protein (A-FABP), a small-molecular-mass fatty acid-binding protein that functions by facilitating the intracellular diffusion of fatty acids between cellular compartments as a putative marker of progression based on a limited study of fresh bladder urothelial carcinomas (UCs) (Celis, J. E., Ostergaard, M., Basse, B., Celis, A., Lauridsen, J. B., Ratz, G. P., Andersen, I., Hein, B., Wolf, H., Orntoft, T. F., and Rasmussen, H. H. (1996) Loss of adipocyte-type fatty acid binding protein and other protein biomarkers is associated with progression of human bladder transitional cell carcinomas. Cancer Res.56, 4782-4790). Here we have comprehensively examined the protein expression profiles of a much larger sample set consisting of 153 bladder specimens (46 nonmalignant biopsies, 11 pTa G1, 40 pTa G2, 10 pTa G3, 13 pT1 G3, 23 pT2-4 G3, and 10 pT2-4 G4) by gel-based proteomics in combination with immunohistochemistry (IHC) using a peptide-based rabbit polyclonal antibody that reacts specifically with this protein. Proteomic profiling showed a striking down-regulation of A-FABP in invasive lesions, a fact that correlated well with immunohistochemical analysis of the same samples. The IHC results were confirmed by using a tissue microarray (TMA) containing 2,317 samples derived from 1,849 bladder cancer patients. Moreover, we found that the altered expression of A-FABP in invasive UCs is not due to deregulated expression of peroxisome proliferator-activated receptor gamma (PPARgamma), a trans-activator of A-FABP. Taken together, these results provide evidence that deregulation of A-FABP may play a role in bladder cancer progression and suggest that A-FABP could have a significant prognostic value in combination with other biomarkers.  相似文献   
963.
Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to discover new ones with the capability to reduce the digestion process. The present study describes a novel proteinase inhibitor from chickpea seeds (Cicer arietinum L.) and its effects against A. grandis. This inhibitor, named CaTI, was purified by using affinity Red-Sepharose Cl-6B chromatography, followed by reversed-phase HPLC (Vydac C18-TP). SDS-PAGE and MALDI-TOF analyses, showed a unique monomeric protein with a mass of 12,877 Da. Purified CaTI showed significant inhibitory activity against larval cotton boll weevil serine proteinases (78%) and against bovine pancreatic trypsin (73%), when analyzed by fluorimetric assays. Although the molecular mass of CaTI corresponded to alpha-amylase/trypsin bifunctional inhibitors masses, no inhibitory activity against insect and mammalian alpha-amylases was observed. In order to observe CaTI in vivo effects, an inhibitor rich fraction was added to an artificial diet at different concentrations. At 1.5% (w/w), CaTI caused severe development delay, several deformities and a mortality rate of approximately 45%. These results suggested that CaTI could be useful in the production of transgenic cotton plants with enhanced resistance toward cotton boll weevil.  相似文献   
964.
The Ellobiopsidae are enigmatic parasites of crustaceans that have been grouped together exclusively on the basis of morphological similarities. Ultrastructural studies have revealed their affiliation within the alveolates, which was confirmed by the phylogenetic analysis of the ribosomal RNA gene (SSU rDNA) sequences of two species of Thalassomyces Niezabitowski, 1913. However, their precise systematic position within this group remains unresolved, since they could not be definitively allied with any particular alveolate group. To better determine the systematic position of ellobiopsids by molecular phylogeny, we sequenced the SSU rDNA from the type-species of the Ellobiopsidae, Ellobiopsis chattoni Caullery, 1910. We found E. chattoni infecting various copepod hosts, Acartia clausi Giesbrecht, Centropages typicus Kröyer and Clausocalanus sp., in the Bay of Marseille, NW Mediterranean Sea, which allowed us to study several stages of the parasite development. A single unicellular multinucleate specimen provided two different sequences of the SSU rDNA gene, indicating the existence of polymorphism at this locus within single individuals. Ellobiopsis Caullery, 1910 and Thalassomyces formed a very divergent and well-supported clade in phylogenetic analyses. This clade appears to be more closely related to the dinoflagellates (including the Syndiniales/Marine Alveolate Group II and the Dinokaryota) and Marine Alveolate Group I than to the other alveolates (Ciliophora, Perkinsozoa and Apicomplexa).  相似文献   
965.
Cytoplasmic lipid bodies (also known as lipid droplets) are intracellular deposits of arachidonic acid (AA), which can be metabolized for eicosanoid generation. PGE2 is a major AA metabolite produced by epithelial cells and can modulate restoration of epithelium homeostasis after injury. We studied lipid body biogenesis and their role in AA metabolic pathway in an epithelial cell line derived from normal rat intestinal epithelium, IEC-6 cells. Lipid bodies were virtually absent in confluent IEC-6 cells. Stimulation of confluent IEC-6 cells with unsaturated fatty acids, including AA or oleic acid (OA), induced rapid lipid body assembly that was independent on its metabolism to PGE2, but dependent on G-coupled receptor-driven signaling through p38, PKC, and PI3K. Newly formed lipid bodies compartmentalized cytosolic phospholipase (cPL)A2-α, while facilitated AA mobilization and synthesis of PGE2 within epithelial cells. Thus, both lipid body-related events, including highly regulated biogenesis and functional assembly of cPLA2-α-driven enhanced AA mobilization and PGE2 production, may have key roles in epithelial cell-driven inflammatory functions, and may represent relevant therapeutic targets of epithelial pathologies.  相似文献   
966.
967.
Concatenated sequence analysis with 16S rRNA, rpoB and fusA genes identified a bacterial strain (IRBG74) isolated from root nodules of the aquatic legume Sesbania cannabina as a close relative of the plant pathogen Rhizobium radiobacter (syn. Agrobacterium tumefaciens ). However, DNA:DNA hybridization with R. radiobacter , R. rubi , R. vitis and R. huautlense gave only 44%, 5%, 8% and 8% similarity respectively, suggesting that IRBG74 is potentially a new species. Additionally, it contained no vir genes and lacked tumour-forming ability, but harboured a sym -plasmid containing nifH and nodA genes similar to those in other Sesbania symbionts. Indeed, IRBG74 effectively nodulated S. cannabina and seven other Sesbania spp. that nodulate with Ensifer ( Sinorhizobium )/ Rhizobium strains with similar nodA genes to IRBG74, but not species that nodulate with Azorhizobium or Mesorhizobium . Light and electron microscopy revealed that IRBG74 infected Sesbania spp. via lateral root junctions under flooded conditions, but via root hairs under non-flooded conditions. Thus, IRBG74 is the first confirmed legume-nodulating symbiont from the Rhizobium ( Agrobacterium ) clade. Cross-inoculation studies with various Sesbania symbionts showed that S. cannabina could form fully effective symbioses with strains in the genera Rhizobium and Ensifer , only ineffective ones with Azorhizobium strains, and either partially effective ( Mesorhizobium huakii ) or ineffective ( Mesorhizobium plurifarium ) symbioses with Mesorhizobium . These data are discussed in terms of the molecular phylogeny of Sesbania and its symbionts.  相似文献   
968.
969.

Background

Micrurus snake bites can cause death by muscle paralysis and respiratory arrest, few hours after envenomation. The specific treatment for coral snake envenomation is the intravenous application of heterologous antivenom and, in Brazil, it is produced by horse immunization with a mixture of M. corallinus and M. frontalis venoms, snakes that inhabit the South and Southeastern regions of the country. However, this antivenom might be inefficient, considering the existence of intra- and inter-specific variations in the composition of the venoms. Therefore, the aim of the present study was to investigate the toxic properties of venoms from nine species of Micrurus: eight present in different geographic regions of Brazil (M. frontalis, M. corallinus, M. hemprichii, M. spixii, M. altirostris, M. surinamensis, M. ibiboboca, M. lemniscatus) and one (M. fulvius) with large distribution in Southeastern United States and Mexico. This study also analyzed the antigenic cross-reactivity and the neutralizing potential of the Brazilian coral snake antivenom against these Micrurus venoms.

Methodology/Principal Findings

Analysis of protein composition and toxicity revealed a large diversity of venoms from the nine Micrurus species. ELISA and Western blot assays showed a varied capability of the therapeutic antivenom to recognize the diverse species venom components. In vivo and in vitro neutralization assays indicated that the antivenom is not able to fully neutralize the toxic activities of all venoms.

Conclusion

These results indicate the existence of a large range of both qualitative and quantitative variations in Micrurus venoms, probably reflecting the adaptation of the snakes from this genus to vastly dissimilar habitats. The data also show that the antivenom used for human therapy in Brazil is not fully able to neutralize the main toxic activities present in the venoms from all Micrurus species occurring in the country. It suggests that modifications in the immunization scheme, with the inclusion of other venoms in the antigenic mixture, should occur in order to generate effective therapeutic coral snake antivenom.  相似文献   
970.
Mucopolysaccharidoses (MPS) are rare genetic diseases caused by the deficiency of one of the lysosomal enzymes involved in the glycosaminoglycan (GAG) breakdown pathway. This metabolic block leads to the accumulation of GAG in various organs and tissues of the affected patients, resulting in a multisystemic clinical picture, sometimes including cognitive impairment. Until the beginning of the XXI century, treatment was mainly supportive. Bone marrow transplantation improved the natural course of the disease in some types of MPS, but the morbidity and mortality restricted its use to selected cases. The identification of the genes involved, the new molecular biology tools and the availability of animal models made it possible to develop specific enzyme replacement therapies (ERT) for these diseases. At present, a great number of Brazilian medical centers from all regions of the country have experience with ERT for MPS I, II, and VI, acquired not only through patient treatment but also in clinical trials. Taking the three types of MPS together, over 200 patients have been treated with ERT in our country. This document summarizes the experience of the professionals involved, along with the data available in the international literature, bringing together and harmonizing the information available on the management of these severe and progressive diseases, thus disclosing new prospects for Brazilian patients affected by these conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号