首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   102篇
  国内免费   1篇
  1233篇
  2021年   9篇
  2020年   8篇
  2018年   10篇
  2016年   12篇
  2015年   19篇
  2014年   23篇
  2013年   47篇
  2012年   50篇
  2011年   34篇
  2010年   24篇
  2009年   27篇
  2008年   35篇
  2007年   49篇
  2006年   46篇
  2005年   27篇
  2004年   29篇
  2003年   28篇
  2002年   34篇
  2001年   31篇
  2000年   39篇
  1999年   29篇
  1998年   23篇
  1997年   9篇
  1996年   15篇
  1995年   15篇
  1994年   10篇
  1993年   8篇
  1992年   34篇
  1991年   31篇
  1990年   38篇
  1989年   30篇
  1988年   37篇
  1987年   18篇
  1986年   24篇
  1985年   25篇
  1984年   16篇
  1983年   17篇
  1982年   18篇
  1981年   10篇
  1980年   12篇
  1979年   9篇
  1978年   15篇
  1977年   12篇
  1976年   14篇
  1974年   9篇
  1973年   9篇
  1971年   10篇
  1970年   8篇
  1966年   8篇
  1911年   7篇
排序方式: 共有1233条查询结果,搜索用时 15 毫秒
81.
82.
These studies examined the importance of phospholipase Cbeta (PLCbeta) in the calcium responses of pituitary cells using PLCbeta3 knockout mice. Pituitary tissue from wild-type mice contained PLCbeta1 and PLCbeta3 but not PLCbeta2 or PLCbeta4. Both Galphaq/11 and Gbetagamma can activate PLCbeta3, whereas only Galphaq/11 activates PLCss1 effectively. In knockout mice, PLCbeta3 was absent, PLCbeta1 was not up-regulated, and PLCbeta2 and PLCbeta4 were not expressed. Since somatostatin inhibited influx of extracellular calcium in pituitary cells from wild-type and PLCbeta3 knockout mice, the somatostatin signal pathway was intact. However, somatostatin failed to increase intracellular calcium in pituitary cells from either wild-type or knockout mice under a variety of conditions, indicating that it did not stimulate PLCbeta3. In contrast, somatostatin increased intracellular calcium in aortic smooth muscle cells from wild-type mice, although it evoked no calcium response in cells from PLCbeta3 knockout animals These results show that somatostatin, like other Gi/Go-linked hormones, can stimulate a calcium transient by activating PLCbeta3 through Gbetagamma, but this response does not normally occur in pituitary cells. The densities of Gi and Go, as well as the relative concentrations of PLCbeta1 and PLCbeta3, were similar in cells that responded to somatostatin with an increase in calcium and pituitary cells. Calcium responses to 1 nM and 1 microM TRH and GnRH were identical in pituitary cells from wild-type and PLCbeta3 knockout mice, as were responses to other Gq-linked agonists. These results show that in pituitary cells, PLCbeta1 is sufficient to transmit signals from Gq-coupled hormones, whereas PLCbeta3 is required for the calcium-mobilizing actions of somatostatin observed in smooth muscle cells.  相似文献   
83.
Weird mammals are of two types. Highly divergent mammals, such as the marsupials and monotremes, have informed us of the evolutionary history of the Y chromosome and sex-determining gene, and the recently specialized rodents can help us predict its future. The Y chromosome has had a short but eventful history, and is already heading briskly for oblivion. It originated as a homologous partner of the X when it acquired a sex-determining gene (not necessarily SRY). Most of the genes on the Y, even those with a male-specific function, evolved from genes now on the X. At the mercy of a high rate of variability and the forces of drift and selection, the Y has lost genes at a rate of 3-6 genes/million years, sparing those that acquired critical male-specific functions. Even these genes have disappeared from one mammalian lineage or another as their functions were usurped by genes elsewhere in the genome. The mammalian testis-determining gene, SRY, is a typical Y-borne gene. It arose by truncation of a gene (SOX3) on the X that is expressed in brain development, and it may work by interacting with (inhibiting?) related genes, including SOX9. Variant sex-determining systems in rodents show that the action of SRY can change, as it evidently has in the mouse, and SRY can be inactivated, as in akodont rodents, or even completely superseded, as in mole voles.  相似文献   
84.
In this paper, we report results obtained from a continuing clinical trial on the effect of coenzyme Q 10 (CoQ 10 ) administration on human vastus lateralis (quadriceps) skeletal muscle. Muscle samples, obtained from aged individuals receiving placebo or CoQ 10 supplementation (300 mg per day for four weeks prior to hip replacement surgery) were analysed for changes in gene and protein expression and in muscle fibre type composition. Microarray analysis (Affymetrix U95A human oligonucleotide array) using a change in gene expression of 1.8-fold or greater as a cutoff point, demonstrated that a total of 115 genes were differentially expressed in six subject comparisons. In the CoQ 10 -treated subjects, 47 genes were up-regulated and 68 down-regulated in comparison with placebo-treated subjects. Restriction fragment differential display analysis showed that over 600 fragments were differentially expressed using a 2.0-fold or greater change in expression as a cutoff point. Proteome analysis revealed that, of the high abundance muscle proteins detected (2086 ±115), the expression of 174 proteins was induced by CoQ 10 while 77 proteins were repressed by CoQ 10 supplementation. Muscle fibre types were also affected by CoQ 10 treatment; CoQ 10 -treated individuals showed a lower proportion of type I (slow twitch) fibres and a higher proportion of type IIb (fast twitch) fibres, compared to age-matched placebo-treated subjects. The data suggests that CoQ 10 treatment can act to influence the fibre type composition towards the fibre type profile generally found in younger individuals. Our results led us to the conclusion that coenzyme Q 10 is a gene regulator and consequently has wide-ranging effects on over-all tissue metabolism. We develop a comprehensive hypothesis that CoQ 10 plays a major role in the determination of membrane potential of many, if not all, sub-cellular membrane systems and that H 2 O 2 arising from the activities of CoQ 10 acts as a second messenger for the modulation of gene expression and cellular metabolism.  相似文献   
85.
AIMS: Carbon source utilization profiles as a phenotypic fingerprinting methodology for determining sources of faecal pollution in water were evaluated. METHODS AND RESULTS: Three hundred and sixty-five Enterococcus isolates were collected from known faecal sources in four different geographical regions and were identified to species with the commercial Biolog system. Discriminant analysis (DA) was used to identify the substrate-containing wells that best classified the 365 isolates by source. By using 30 of the 95 wells for the analysis, the average rate of correct classification (ARCC) by source was 92.7% for a human vs non-human two-way classification when isolates from all regions were combined into one library. Corresponding ARCCs for other classification schemes were 81.9% for a four-way classification of human vs livestock vs wildlife vs domestic pets, and 85.7% for a three-way classification without human isolates. When three individual libraries were made based on classification of sources within Enterococcus species, the ARCC was 95.3% for the Ent. faecalis library, 95.8% for the Ent. gallinarum library and 94.7% for the Ent. mundtii library. Thirty Enterococcus isolates (unknown sources) were obtained from each of three stream sites where a specific source of pollution was apparent; 90.0% of the isolates from a human-suspected source were classified as human, 86.6% were classified as livestock from a livestock-suspected site, and 93.3% were classified as wildlife from a wildlife-suspected site. CONCLUSIONS: Phenotypic fingerprinting with carbon source utilization profiles provided levels of correct classification by sources from an Enterococcus library that were in the upper range of those reported in the literature. ARCCs for three Enterococcus species-specific libraries were very high and may be the best approach for further developing this concept and methodology. SIGNIFICANCE ANC IMPACT OF THE STUDY: The results, based on a modest Enterococcus library and a preliminary field validation test, demonstrated the potential for carbon source utilization profiles to be employed as a phenotypic method for determining sources of faecal pollution in water.  相似文献   
86.
A topological study of the yeast ATP synthase membranous domain was undertaken by means of chemical modifications and cross-linking experiments on the wild-type complex and on mutated enzymes obtained by site-directed mutagenesis of genes encoding ATP synthase subunits. The modification by non-permeant maleimide reagents of the Cys-54 of mutated subunit 4 (subunit b), of the Cys-23 in the N-terminus of subunit 6 (subunit a) and of the Cys-91 in the C-terminus of mutated subunit f demonstrated their location in the mitochondrial intermembrane space. Near-neighbour relationships between subunits of the complex were demonstrated by means of homobifunctional and heterobifunctional reagents. Our data suggest interactions between the first transmembranous alpha-helix of subunit 6, the two hydrophobic segments of subunit 4 and the unique membrane-spanning segments of subunits i and f. The amino acid residue 174 of subunit 4 is close to both oscp and the beta-subunit, and the residue 209 is close to oscp. The dimerisation of subunit 4 in the membrane revealed that this component is located in the periphery of the enzyme and interacts with other ATP synthase complexes.  相似文献   
87.
88.
The topology of subunit i, a component of the yeast F(o)F(1)-ATP synthase, was determined by the use of cysteine-substituted mutants. The N(in)-C(out) orientation of this intrinsic subunit was confirmed by chemical modification of unique cysteine residues with 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid. Near-neighbor relationships between subunit i and subunits 6, f, g, and d were demonstrated by cross-link formation following sulfhydryl oxidation or reaction with homobifunctional and heterobifunctional reagents. Our data suggest interactions between the unique membrane-spanning segment of subunit i and the first transmembranous alpha-helix of subunit 6 and a stoichiometry of 1 subunit i per complex. Cross-linked products between mutant subunits i and proteins loosely bound to the F(o)F(1)-ATP synthase suggest that subunit i is located at the periphery of the enzyme and interacts with proteins of the inner mitochondrial membrane that are not involved in the structure of the yeast ATP synthase.  相似文献   
89.
Recently, a rapidly increasing number of bacteria has been isolated that is able to couple the reductive dehalogenation of various halogenated aromatic and aliphatic compounds like chlorophenols and tetrachloroethene to energy conservation by electron-transport-coupled phosphorylation. The potential of these halorespiring bacteria for innovative clean-up strategies of polluted anoxic environments has greatly stimulated efforts to unravel the molecular basis of the novel respiratory chains they possess. The thorough characterization of halorespiratory key components at the physiological, biochemical and molecular genetic level has revealed both structural and functional similarity of chloroaryl- and chloroalkyl-respiratory chains from different phylogenetically distinct microorganisms. The reductive dehalogenases from halorespiring bacteria were found to comprise a novel class of corrinoid-containing Fe/S-proteins. Sensitive molecular methods for monitoring both presence and fate of halorespiring bacteria have been developed, which will be instrumental for the design and maintenance of optimised in situ bioremediation processes.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号