首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   996篇
  免费   74篇
  2023年   4篇
  2022年   9篇
  2021年   25篇
  2020年   15篇
  2019年   20篇
  2018年   22篇
  2017年   20篇
  2016年   29篇
  2015年   73篇
  2014年   58篇
  2013年   78篇
  2012年   80篇
  2011年   74篇
  2010年   61篇
  2009年   52篇
  2008年   60篇
  2007年   41篇
  2006年   55篇
  2005年   33篇
  2004年   37篇
  2003年   38篇
  2002年   26篇
  2001年   5篇
  2000年   6篇
  1999年   6篇
  1998年   9篇
  1996年   4篇
  1995年   3篇
  1994年   7篇
  1993年   6篇
  1992年   9篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1981年   6篇
  1979年   3篇
  1978年   7篇
  1976年   4篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1971年   4篇
  1968年   4篇
  1967年   2篇
排序方式: 共有1070条查询结果,搜索用时 953 毫秒
81.
There is considerable debate as to the nature of the primary parasite-derived moieties that activate innate pro-inflammatory responses during malaria infection. Microparticles (MPs), which are produced by numerous cell types following vesiculation of the cellular membrane as a consequence of cell death or immune-activation, exert strong pro-inflammatory activity in other disease states. Here we demonstrate that MPs, derived from the plasma of malaria infected mice, but not naive mice, induce potent activation of macrophages in vitro as measured by CD40 up-regulation and TNF production. In vitro, these MPs induced significantly higher levels of macrophage activation than intact infected red blood cells. Immunofluorescence staining revealed that MPs contained significant amounts of parasite material indicating that they are derived primarily from infected red blood cells rather than platelets or endothelial cells. MP driven macrophage activation was completely abolished in the absence of MyD88 and TLR-4 signalling. Similar levels of immunogenic MPs were produced in WT and in TNF−/−, IFN-γ−/−, IL-12−/− and RAG-1−/− malaria-infected mice, but were not produced in mice injected with LPS, showing that inflammation is not required for the production of MPs during malaria infection. This study therefore establishes parasitized red blood cell-derived MPs as a major inducer of systemic inflammation during malaria infection, raising important questions about their role in severe disease and in the generation of adaptive immune responses.  相似文献   
82.
83.
Ghrelin is a gut-brain peptide synthesized mainly in the oxyntic mucosal cells of the stomach, and has potent growth hormone (GH)-releasing and orexigenic activities. Recently, two forms of ghrelin, ghrelin-C8 and -C10, were identified in the Mozambique tilapia (Oreochromis mossambicus). The present study describes in vitro and in vivo effects of these endogenous ghrelins on the GH/insulin-like growth factor-I (IGF-I) axis. Ghrelin-C8 (100 nM) stimulated GH release from primary cultures of pituitary cells after 4 and 8 h of incubation, whereas no effect was seen on prolactin (PRL) release. Stimulatory effects of ghrelin-C8 and -C10 (100 nM) on GH release during 6 h of incubation were blocked by pre-incubation with GHS receptor antagonist, [D-Lys(3)]-GHRP-6 (10 microM). Intraperitoneal injection of ghrelin-C8 (1 ng/g body weight) and -C10 (0.1 and 1 ng/g body weight) significantly increased plasma GH levels after 5 h. Significant increases were observed also in hepatic expression of IGF-I and GH receptor (GHR) mRNA following injections of both forms of ghrelin (0.1 and 1 ng/g body weight), although there was no effect on plasma levels of IGF-I. In the next experiment, both forms of ghrelin (1 ng/g body weight) significantly increased plasma IGF-I levels 10 h after the injection. No significant effect of either ghrelin was observed on plasma PRL levels. Both forms of GHS receptor (GHSR-1a and -1b) were found in the pituitary, clearly indicating that tilapia ghrelins stimulate primarily GH release through the GHS receptor. Stimulation of hepatic expression of IGF-I and GHR suggests metabolic roles of ghrelin in tilapia.  相似文献   
84.
The judgment of pleasantness/unpleasantness is the prominent reaction to the olfactory world. In human adults, the hedonic valence of odor perception is affected by various factors, among which is an individual's lexical knowledge about smells. The present study examined whether such top-down effects of lexical knowledge on hedonic judgment of olfactory input are similar in children (5-6 years) and adults (20-25 years). In both groups, the lexical knowledge was found to influence the perception of the least emotional (or most neutral) odors: the pleasantness of the smells of banana and mint was enhanced when participants were given the corresponding odor label before olfactory sensation. These results lend support to the notion that, during childhood, smells are not only encoded perceptually but that verbal encoding also steers contextual effects that may be prominent factors in the early memorization and categorization of odors.  相似文献   
85.
In budding yeast, chitin is found in three locations: at the primary septum, largely in free form, at the mother-bud neck, partially linked to beta(1-3)glucan, and in the lateral wall, attached in part to beta(1-6)glucan. By using a recently developed strategy for the study of cell wall cross-links, we have found that chitin linked to beta(1-6)glucan is diminished in mutants of the CRH1 or the CRH2/UTR2 gene and completely absent in a double mutant. This indicates that Crh1p and Crh2p, homologues of glycosyltransferases, ferry chitin chains from chitin synthase III to beta(1-6)glucan. Deletion of CRH1 and/or CRH2 aggravated the defects of fks1Delta and gas1Delta mutants, which are impaired in cell wall synthesis. A temperature shift from 30 degrees C to 38 degrees C increased the proportion of chitin attached to beta(1-6)glucan. The expression of CRH1, but not that of CRH2, was also higher at 38 degrees C in a manner dependent on the cell integrity pathway. Furthermore, the localization of both Crh1p and Crh2p at the cell cortex, the area where the chitin-beta(1-6)glucan complex is found, was greatly enhanced at 38 degrees C. Crh1p and Crh2p are the first proteins directly implicated in the formation of cross-links between cell wall components in fungi.  相似文献   
86.

Background  

Mammalian centromere formation is dependent on chromatin that contains centromere protein (CENP)-A, which is the centromere-specific histone H3 variant. Human neocentromeres have acquired CENP-A chromatin epigenetically in ectopic chromosomal locations on low-copy complex DNA. Neocentromeres permit detailed investigation of centromeric chromatin organization that is not possible in the highly repetitive alpha satellite DNA present at endogenous centromeres.  相似文献   
87.
The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut.  相似文献   
88.
89.
A hallmark of ischemic/reperfusion injury is a change in subunit composition of synaptic 2‐amino‐3‐(3‐hydroxy‐5‐methylisoazol‐4‐yl)propionic acid receptors (AMPARs). This change in AMPAR subunit composition leads to an increase in surface expression of GluA2‐lacking Ca2+/Zn2+ permeable AMPARs. These GluA2‐lacking AMPARs play a key role in promoting delayed neuronal death following ischemic injury. At present, the mechanism(s) responsible for the ischemia/reperfusion‐induced subunit composition switch and degradation of the GluA2 subunit remain unclear. In this study, we investigated the role of NADPH oxidase, and its importance in mediating endocytosis and subsequent degradation of the GluA2 AMPAR subunit in adult rat hippocampal slices subjected to oxygen–glucose deprivation/reperfusion (OGD/R) injury. In hippocampal slices pre‐treated with the NADPH oxidase inhibitor apocynin attenuated OGD/R‐mediated sequestration of GluA2 and GluA1 as well as prevent the degradation of GluA2. We provide compelling evidence that NADPH oxidase mediated sequestration of GluA1‐ and GluA2‐ involved activation of p38 MAPK. Furthermore, we demonstrate that inhibition of NADPH oxidase blunts the OGD/R‐induced association of GluA2 with protein interacting with C kinase‐1. In summary, this study identifies a novel mechanism that may underlie the ischemia/reperfusion‐induced AMPAR subunit composition switch and a potential therapeutic target.

  相似文献   

90.
By regulating actin cytoskeleton dynamics, Rho GTPases and their activators RhoGEFs are implicated in various aspects of neuronal differentiation, including dendritogenesis and synaptogenesis. Purkinje cells (PCs) of the cerebellum, by developing spectacular dendrites covered with spines, represent an attractive model system in which to decipher the molecular signaling underlying these processes. To identify novel regulators of dendritic spine morphogenesis among members of the poorly characterized DOCK family of RhoGEFs, we performed gene expression profiling of fluorescence-activated cell sorting (FACS)-purified murine PCs at various stages of their postnatal differentiation. We found a strong increase in the expression of the Cdc42-specific GEF DOCK10. Depleting DOCK10 in organotypic cerebellar cultures resulted in dramatic dendritic spine defects in PCs. Accordingly, in mouse hippocampal neurons, depletion of DOCK10 or expression of a DOCK10 GEF-dead mutant led to a strong decrease in spine density and size. Conversely, overexpression of DOCK10 led to increased spine formation. We show that DOCK10 function in spinogenesis is mediated mainly by Cdc42 and its downstream effectors N-WASP and PAK3, although DOCK10 is also able to activate Rac1. Our global approach thus identifies an unprecedented function for DOCK10 as a novel regulator of dendritic spine morphogenesis via a Cdc42-mediated pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号