首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   26篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   7篇
  2012年   15篇
  2011年   19篇
  2010年   10篇
  2009年   3篇
  2008年   6篇
  2007年   10篇
  2006年   14篇
  2005年   8篇
  2004年   9篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
  1967年   1篇
  1961年   1篇
  1960年   2篇
  1959年   1篇
  1958年   1篇
  1956年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有184条查询结果,搜索用时 31 毫秒
31.
32.
Haemophilus biotype IV strains belonging to the recently recognized Haemophilus cryptic genospecies are an important cause of maternal genital tract and neonatal systemic infections and initiate infection by colonizing the genital or respiratory epithelium. To gain insight into the mechanism of Haemophilus cryptic genospecies colonization, we began by examining prototype strain 1595 and three other strains for adherence to genital and respiratory epithelial cell lines. Strain 1595 and two of the three other strains demonstrated efficient adherence to all of the cell lines tested. With a stably adherent variant of strain 1595, we generated a Mariner transposon library and identified 16 nonadherent mutants. All of these mutants lacked surface fibers and contained an insertion in the same open reading frame, which encodes a 157-kDa protein designated Cha for cryptic haemophilus adhesin. Analysis of the predicted amino acid sequence of Cha revealed the presence of an N-terminal signal peptide and a C-terminal domain bearing homology to YadA-like and Hia-like trimeric autotransporters. Examination of the C-terminal 120 amino acids of Cha demonstrated mobility as a trimer on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the capacity to present the passenger domain of the Hia trimeric autotransporter on the bacterial surface. Southern analysis revealed that the gene that encodes Cha is conserved among clinical isolates of the Haemophilus cryptic genospecies and is absent from the closely related species Haemophilus influenzae. We speculate that Cha is important in the pathogenesis of disease due to the Haemophilus cryptic genospecies and is in part responsible for the apparent tissue tropism of this organism.  相似文献   
33.
Choi KJ  Grass S  Paek S  St Geme JW  Yeo HJ 《PloS one》2010,5(12):e15888
The Haemophilus influenzae HMW1 adhesin is an important virulence exoprotein that is secreted via the two-partner secretion pathway and is glycosylated at multiple asparagine residues in consensus N-linked sequons. Unlike the heavily branched glycans found in eukaryotic N-linked glycoproteins, the modifying glycan structures in HMW1 are mono-hexoses or di-hexoses. Recent work demonstrated that the H. influenzae HMW1C protein is the glycosyltransferase responsible for transferring glucose and galactose to the acceptor sites of HMW1. An Actinobacillus pleuropneumoniae protein designated ApHMW1C shares high-level homology with HMW1C and has been assigned to the GT41 family, which otherwise contains only O-glycosyltransferases. In this study, we demonstrated that ApHMW1C has N-glycosyltransferase activity and is able to transfer glucose and galactose to known asparagine sites in HMW1. In addition, we found that ApHMW1C is able to complement a deficiency of HMW1C and mediate HMW1 glycosylation and adhesive activity in whole bacteria. Initial structure-function studies suggested that ApHMW1C consists of two domains, including a 15-kDa N-terminal domain and a 55-kDa C-terminal domain harboring glycosyltransferase activity. These findings suggest a new subfamily of HMW1C-like glycosyltransferases distinct from other GT41 family O-glycosyltransferases.  相似文献   
34.
To ensure that aberrantly folded proteins are cleared from the endoplasmic reticulum (ER), all eukaryotic cells possess a mechanism known as endoplasmic reticulum–associated degradation (ERAD). Many secretory proteins are N-glycosylated, and despite some recent progress, little is known about the mechanism that selects misfolded glycoproteins for degradation in plants. Here, we investigated the role of Arabidopsis thaliana class I α-mannosidases (MNS1 to MNS5) in glycan-dependent ERAD. Our genetic and biochemical data show that the two ER-resident proteins MNS4 and MNS5 are involved in the degradation of misfolded variants of the heavily glycosylated brassinosteroid receptor, BRASSINOSTEROID INSENSITIVE1, while MNS1 to MNS3 appear dispensable for this ERAD process. By contrast, N-glycan analysis of different mns mutant combinations revealed that MNS4 and MNS5 are not involved in regular N-glycan processing of properly folded secretory glycoproteins. Overexpression of MNS4 or MNS5 together with ER-retained glycoproteins indicates further that both enzymes can convert Glc0-1Man8-9GlcNAc2 into N-glycans with a terminal α1,6-linked Man residue in the C-branch. Thus, MNS4 and MNS5 function in the formation of unique N-glycan structures that are specifically recognized by other components of the ERAD machinery, which ultimately results in the disposal of misfolded glycoproteins.  相似文献   
35.
Metallic copper surfaces have strong antimicrobial properties and kill bacteria, such as Escherichia coli, within minutes in a process called contact killing. These bacteria are exposed to acute copper stress under dry conditions which is different from chronic copper stress in growing liquid cultures. Currently, the physiological changes of E. coli during the acute contact killing process are largely unknown. Here, a label-free, quantitative proteomic approach was employed to identify the differential proteome profiles of E. coli cells after sub-lethal and lethal exposure to dry metallic copper. Of the 509 proteins identified, 110 proteins were differentially expressed after sub-lethal exposure, whereas 136 proteins had significant differences in their abundance levels after lethal exposure to copper compared to unexposed cells. A total of 210 proteins were identified only in copper-responsive proteomes. Copper surface stress coincided with increased abundance of proteins involved in secondary metabolite biosynthesis, transport and catabolism, including efflux proteins and multidrug resistance proteins. Proteins involved in translation, ribosomal structure and biogenesis functions were down-regulated after contact to metallic copper. The set of changes invoked by copper surface-exposure was diverse without a clear connection to copper ion stress but was different from that caused by exposure to stainless steel. Oxidative posttranslational modifications of proteins were observed in cells exposed to copper but also from stainless steel surfaces. However, proteins from copper stressed cells exhibited a higher degree of oxidative proline and threonine modifications.  相似文献   
36.
In vertebrates, the presence of viral RNA in the cytosol is sensed by members of the RIG‐I‐like receptor (RLR) family, which signal to induce production of type I interferons (IFN). These key antiviral cytokines act in a paracrine and autocrine manner to induce hundreds of interferon‐stimulated genes (ISGs), whose protein products restrict viral entry, replication and budding. ISGs include the RLRs themselves: RIG‐I, MDA5 and, the least‐studied family member, LGP2. In contrast, the IFN system is absent in plants and invertebrates, which defend themselves from viral intruders using RNA interference (RNAi). In RNAi, the endoribonuclease Dicer cleaves virus‐derived double‐stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that target complementary viral RNA for cleavage. Interestingly, the RNAi machinery is conserved in mammals, and we have recently demonstrated that it is able to participate in mammalian antiviral defence in conditions in which the IFN system is suppressed. In contrast, when the IFN system is active, one or more ISGs act to mask or suppress antiviral RNAi. Here, we demonstrate that LGP2 constitutes one of the ISGs that can inhibit antiviral RNAi in mammals. We show that LGP2 associates with Dicer and inhibits cleavage of dsRNA into siRNAs both in vitro and in cells. Further, we show that in differentiated cells lacking components of the IFN response, ectopic expression of LGP2 interferes with RNAi‐dependent suppression of gene expression. Conversely, genetic loss of LGP2 uncovers dsRNA‐mediated RNAi albeit less strongly than complete loss of the IFN system. Thus, the inefficiency of RNAi as a mechanism of antiviral defence in mammalian somatic cells can be in part attributed to Dicer inhibition by LGP2 induced by type I IFNs. LGP2‐mediated antagonism of dsRNA‐mediated RNAi may help ensure that viral dsRNA substrates are preserved in order to serve as targets of antiviral ISG proteins.  相似文献   
37.
To define the role of the surface lipooligosaccharide (LOS) of Haemophilus ducreyi in the pathogenesis of chancroid, Tn916 mutants of H. ducreyi 35000 defective in expression of the murine monoclonal antibody (MAb) 3F11 epitope on H. ducreyi LOS were identified by immunologic screening. One mutant, designated 1381, has an LOS which lacks the MAb 3F11 epitope and migrates with an increased mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene disrupted by the Tn916 element in strain 1381 was identified by cloning the sequences flanking the Tn916 element. The sequences were then used to probe a lambda DASHII genomic library. In strain 1381, Tn916 interrupts a gene which encodes an open reading frame (ORF) with an Mr of 40,246. This ORF has homology to the product of the rfaK gene of Escherichia coli. The major LOS glycoform produced by strain 1381 was analyzed by using a combination of mass spectrometry, linkage and composition analysis, and 1H nuclear magnetic resonance spectroscopy. The major LOS species was found to terminate in a single glucose attached to the heptose (L-glycero-D-manno-heptose, or Hep) trisaccharide core. In the wild-type strain 35000, glucose serves as the acceptor for the addition of the D-glycero-D-manno-heptose (or DDHep), which extends to form the mature branch of the H. ducreyi LOS. This mature oligosaccharide is in turn partially capped by the addition of sialic acid (NeuAc), i.e., NeuAc2 alpha-->3Gal beta1-->4GlcNAc beta1-->3Gal beta1-->4DDHep alpha1-->6Glc beta1 (W. Melaugh et al., Biochemistry 33:13070-13078, 1994). Since this LOS terminates prior to the addition of the branch DD-heptose, this gene is likely to encode the D-glycero-D-manno-heptosyltransferase. Strain 1381 exhibits a significant reduction in adherence to and invasion of primary human keratinocytes. This defect was complemented by the cloned heptosyltransferase gene, indicating that the terminal portion of the LOS oligosaccharide plays an important role in adherence to human keratinocytes.  相似文献   
38.
HIV co-infection is an important risk factor for tuberculosis (TB) providing a powerful model in which to dissect out defective, protective and dysfunctional Mycobacterium tuberculosis (MTB)-specific immune responses. To identify the changes induced by HIV co-infection we compared MTB-specific CD4+ responses in subjects with active TB and latent TB infection (LTBI), with and without HIV co-infection. CD4+ T-cell subsets producing interferon-gamma (IFN-γ), interleukin-2 (IL-2) and tumour necrosis factor-alpha (TNF-α) and expressing CD279 (PD-1) were measured using polychromatic flow-cytometry. HIV-TB co-infection was consistently and independently associated with a reduced frequency of CD4+ IFN-γ and IL-2-dual secreting T-cells and the proportion correlated inversely with HIV viral load (VL). The impact of HIV co-infection on this key MTB-specific T-cell subset identifies them as a potential correlate of mycobacterial immune containment. The percentage of MTB-specific IFN-γ-secreting T-cell subsets that expressed PD-1 was increased in active TB with HIV co-infection and correlated with VL. This identifies a novel correlate of dysregulated immunity to MTB, which may in part explain the paucity of inflammatory response in the face of mycobacterial dissemination that characterizes active TB with HIV co-infection.  相似文献   
39.
In previous studies, it has been demonstrated that outer membrane protein P2 from Haemophilus influenzae type b has porin activity and that antibody directed against P2 is protective in an infant rat bacteraemic model. Outer membrane protein subtyping has been employed to subclassify type b Haemophilus isolates. Strain MinnA has the outer membrane protein subtype 1H and is representative of the dominant clonal group of disease-producing isolates in the United States. In the present study, the P2 gene from strain MinnA was employed to probe EcoRI- and Pvull-digested chromosomal DNA from 24 Haemophilus influenzae type b isolates representative of the common outer membrane protein subtype groups observed throughout the world. Restriction fragment length polymorphisms were identified for the members of the outer membrane protein subtype 3L group, but not for the other subtypes examined. The P2 gene from each of four prototype isolates was then cloned, sequenced and compared to the previously reported sequence of the strain MinnA gene. The P2 gene from each of two isolates with the outer membrane protein subtype 3L was identical to the MinnA P2 sequence. The P2 gene from a subtype 2L isolate differed by a single nucleotide and the gene from a subtype 6U isolate differed by 13 nucleotides. Thus, the P2 protein is highly conserved among type b isolates.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号