首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5051篇
  免费   567篇
  5618篇
  2022年   41篇
  2021年   73篇
  2020年   46篇
  2019年   48篇
  2018年   62篇
  2017年   67篇
  2016年   114篇
  2015年   176篇
  2014年   184篇
  2013年   271篇
  2012年   280篇
  2011年   320篇
  2010年   206篇
  2009年   170篇
  2008年   242篇
  2007年   230篇
  2006年   212篇
  2005年   197篇
  2004年   195篇
  2003年   183篇
  2002年   199篇
  2001年   115篇
  2000年   103篇
  1999年   116篇
  1998年   64篇
  1997年   51篇
  1996年   70篇
  1995年   54篇
  1994年   57篇
  1993年   63篇
  1992年   65篇
  1991年   53篇
  1990年   70篇
  1989年   87篇
  1988年   57篇
  1987年   41篇
  1986年   46篇
  1985年   49篇
  1984年   52篇
  1983年   40篇
  1982年   50篇
  1981年   40篇
  1980年   39篇
  1979年   49篇
  1978年   34篇
  1977年   35篇
  1976年   49篇
  1975年   33篇
  1974年   52篇
  1973年   42篇
排序方式: 共有5618条查询结果,搜索用时 15 毫秒
101.
The effects of L-azetidine 2-carboxylic acid on growth and proline metabolism in a proline-requiring auxotroph of Escherichia coli are described. The homologue inhibited growth of the wild type and it, alone, did not substitute effectively for proline as a growth supplement for the mutant. In medium containing 0.05 mM proline, the addition of increasing amounts of homologue progressively inhibited growth of the wild type but stimulated growth of the mutant at homologue: proline ratios of 10 : 1 and 50 : 1. This suggested that the homologue exerted a “sparing effect” on proline in the mutant.The incorporation of L-[U-14C]proline and L-[3H]azetidine 2-carboxylic acid into hot trichloroacetic acid-insoluble material in the mutant was measured. Amino acid analysis of the insoluble material from cells incubated with radiolabeled proline alone revealed that proline was partially degraded and metabolized to other amino acids prior to incorporation into protein. The addition of unlabeled homologue to the incubation medium significantly reduced proline catabolism, suggesting that the homologue exerted a sparing effect on proline in this mutant. In medium containing unlabeled proline and radiolabeled L-azetidine 2-carboxylic acid, the homologuewas incorporated both intact and partially degraded prior to incorporation into protein. Alanine was the major L-azetidine 2-carboxylic acid catabolite.  相似文献   
102.
In December 1968 an emergency service was set up in Edinburgh to enable patients with severe asthma to be admitted to hospital without delay. Up to 31 August 1975, 82 such patients had been admitted on 162 occasions, on 116 without the intervention of a general practitioner. The service is extended to patients particularly at risk of developing fatal asthma, and since it began no patient has died from asthma outside hospital. One patient, however, died from tension pneumothorax that developed after admission. We believe that similar services should be available throughout Britain.  相似文献   
103.
104.
105.
The molecular complexity of mammalian proteomes demands new methods for mapping the organization of multiprotein complexes. Here, we combine mouse genetics and proteomics to characterize synapse protein complexes and interaction networks. New tandem affinity purification (TAP) tags were fused to the carboxyl terminus of PSD‐95 using gene targeting in mice. Homozygous mice showed no detectable abnormalities in PSD‐95 expression, subcellular localization or synaptic electrophysiological function. Analysis of multiprotein complexes purified under native conditions by mass spectrometry defined known and new interactors: 118 proteins comprising crucial functional components of synapses, including glutamate receptors, K+ channels, scaffolding and signaling proteins, were recovered. Network clustering of protein interactions generated five connected clusters, with two clusters containing all the major ionotropic glutamate receptors and one cluster with voltage‐dependent K+ channels. Annotation of clusters with human disease associations revealed that multiple disorders map to the network, with a significant correlation of schizophrenia within the glutamate receptor clusters. This targeted TAP tagging strategy is generally applicable to mammalian proteomics and systems biology approaches to disease.  相似文献   
106.
107.
Selecting the optimum diet for endocrine disruptor (ED) research and testing studies in rodents is critical because the diet may determine the sensitivity to detect or properly evaluate an ED compound. Dietary estrogens can profoundly influence many molecular and cellular event actions on estrogen receptors and estrogen-sensitive genes. The source, concentration, relative potency, and significance of dietary estrogens in rodent diets are reviewed, including dietary factors that focus specifically on total metabolizable energy and phytoestrogen content, which potentially affect ED studies in rodents. Research efforts to determine dietary factors in commercially available rodent diets that affect uterotrophic assays and the time of vaginal opening in immature CD-1 mice are summarized. A checklist is provided of important factors to consider when selecting diets for ED research and testing studies in rodents. Specific metabolizable energy levels are recommended for particular bioassays. Discussions include the between-batch variation in content of the phytoestrogens daidzein and genistein, the effects of total metabolizable energy and phytoestrogens on the timing (i.e., acceleration) of vaginal opening, and increased uterine weight in immature CD-1 mice. It is concluded that rodent diets differ significantly in estrogenic activity primarily due to the large variations in phytoestrogen content; therefore animal diets used in all ED studies should ideally be free of endocrine-modulating compounds.  相似文献   
108.
The tomato Cf-4 and Cf-9 genes confer resistance to infection by the biotrophic leaf mold pathogen Cladosporium. Their protein products induce a hypersensitive response (HR) upon recognition of the fungus-encoded Avr4 and Avr9 peptides. Cf-4 and Cf-9 share >91% sequence identity and are distinguished by sequences in their N-terminal domains A and B, their N-terminal leucine-rich repeats (LRRs) in domain C1, and their LRR copy number (25 and 27 LRRs, respectively). Analysis of Cf-4/Cf-9 chimeras, using several different bioassays, has identified sequences in Cf-4 and Cf-9 that are required for the Avr-dependent HR in tobacco and tomato. A 10-amino acid deletion within Cf-4 domain B relative to Cf-9 was required for full Avr4-dependent induction of an HR in most chimeras analyzed. Additional sequences required for Cf-4 function are located in LRRs 11 and 12, a region that contains only eight of the 67 amino acids that distinguish it from Cf-9. One chimera, with 25 LRRs that retained LRR 11 of Cf-4, induced an attenuated Avr4-dependent HR. The substitution of Cf-9 N-terminal LRRs 1 to 9 with the corresponding sequences from Cf-4 resulted in attenuation of the Avr9-induced HR, as did substitution of amino acid A433 in LRR 15. The amino acids L457 and K511 in Cf-9 LRRs 16 and 18 are essential for induction of the Avr9-dependent HR. Therefore, important sequence determinants of Cf-9 function are located in LRRs 10 to 18. This region contains 15 of the 67 amino acids that distinguish it from Cf-4, in addition to two extra LRRs. Our results demonstrate that sequence variation within the central LRRs of domain C1 and variation in LRR copy number in Cf-4 and Cf-9 play a major role in determining recognition specificity in these proteins.  相似文献   
109.
PCR-based subtractive hybridisation was used to identify genes up-regulated when pericytes undergo osteogenic differentiation and deposit a calcified matrix. cDNA pools were generated from confluent pericytes and from pericyte cultures containing calcified nodules. A pericyte cDNA library was screened with the product of the subtraction procedure (calcified minus confluent cDNA) and the majority of the positive clones were identified as matrix Gla protein (MGP). Northern analysis and immunohistochemistry demonstrated that MGP was only expressed by pericytes in calcified nodules. Antibodies to MGP inhibited the deposition of a calcified matrix by pericytes, suggesting that MGP regulates both cell differentiation and calcification.  相似文献   
110.
Multi-protein complexes, termed “inflammasomes,” are known to contribute to neuronal cell death and brain injury following ischemic stroke. Ischemic stroke increases the expression and activation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) Pyrin domain containing 1 and 3 (NLRP1 and NLRP3) inflammasome proteins and both interleukin (IL)-1β and IL-18 in neurons. In this study, we provide evidence that activation of either the NF-κB and MAPK signaling pathways was partly responsible for inducing the expression and activation of NLRP1 and NLRP3 inflammasome proteins and that these effects can be attenuated using pharmacological inhibitors of these two pathways in neurons and brain tissue under in vitro and in vivo ischemic conditions, respectively. Moreover, these findings provided supporting evidence that treatment with intravenous immunoglobulin (IVIg) preparation can reduce activation of the NF-κB and MAPK signaling pathways resulting in decreased expression and activation of NLRP1 and NLRP3 inflammasomes, as well as increasing expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, in primary cortical neurons and/or cerebral tissue under in vitro and in vivo ischemic conditions. In summary, these results provide compelling evidence that both the NF-κB and MAPK signaling pathways play a pivotal role in regulating the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons and brain tissue under ischemic conditions. In addition, treatment with IVIg preparation decreased the activation of the NF-κB and MAPK signaling pathways, and thus attenuated the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons under ischemic conditions. Hence, these findings suggest that therapeutic interventions that target inflammasome activation in neurons may provide new opportunities in the future treatment of ischemic stroke.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号