首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   13篇
  2015年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   5篇
  2000年   6篇
  1999年   6篇
  1996年   1篇
  1995年   1篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   4篇
  1974年   5篇
  1973年   2篇
  1972年   5篇
  1970年   3篇
  1968年   1篇
  1967年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
31.
32.
The ability of a retinoic acid (RA) response element (RARE) in the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter to mediate effects of either RA or thyroid hormone (T3) on gene expression was studied. Fusion gene constructs consisting of PEPCK promoter sequences ligated to the chloramphenicol acetyltransferase (CAT) reporter gene were used for this analysis. While T3 induced CAT expression to a small degree (about twofold) when such constructs were transiently transfected into H4IIE rat hepatoma cells, along with an expression vector encoding the alpha subtype of the T3 receptor (TR), this effect was mediated by promoter sequences distinct from the PEPCK RARE. Although TRs were capable of binding the PEPCK RARE in the form of putative monomers, dimers, and heterodimers with RA receptors (RARs), this element failed to mediate any positive effect of T3 on gene expression. In contrast, the PEPCK RARE mediated six- to eightfold induction of CAT expression by RA. When TRs were coexpressed along with RARs in transfected H4IIE cells, this RA induction was substantially blunted in a T3-independent manner. This inhibitory effect may be due to the binding of nonfunctional TRs or TR-RAR heterodimers to the PEPCK RARE. A model is proposed to explain the previously observed in vivo effects of T3 on PEPCK gene expression.  相似文献   
33.
The amino acid sequence of rat liver glucokinase deduced from cloned cDNA   总被引:16,自引:0,他引:16  
Rat liver glucokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) was purified to homogeneity, cleaved, and subjected to amino acid sequence analysis. Forty-five percent of the protein sequence was obtained, and this information was used to design oligonucleotide probes to screen a rat liver cDNA library. A 1601-base pair cDNA (GK1) contained an open reading frame that encoded the amino acid sequences found in the peptides used to generate the oligonucleotide probes. A second cDNA was subsequently identified (GK.Z2), which is 2346 base pairs long and corresponds to nearly the entire glucokinase mRNA. Blot transfer analysis of hepatic RNA showed that glucokinase mRNA exists as a single species of about 2400 nucleotides. Four hours of insulin treatment of diabetic rats resulted in a 30-fold induction of this mRNA. GK.Z2 has a long open reading frame which, with the known partial peptide sequence, allowed us to deduce the primary structure of glucokinase. The enzyme is composed of 465 amino acids and has a mass of 51,924 daltons. Glucokinase has 53 and 33% amino acid sequence identities with the carboxyl-terminal domains of rat brain hexokinase I and yeast hexokinase, respectively. If conservative amino acid replacements are also considered, glucokinase is similar to these two enzymes at 75 and 63% of positions, respectively. The putative glucose- and ATP-binding domains of glucokinase were identified, and these regions appear to be highly conserved in the hexokinase family of enzymes.  相似文献   
34.
35.
36.
37.
The effect of N6,O2'-dibutyryl cyclic adenosine monophosphate (Bt2cAMP) on the induction of the mRNA coding for the enzyme phosphoenolpyruvate carboxykinase was examined in H4-II-E cells. this mRNA comprised about 0.1% of total cellular poly(A)+RNA activity in uninduced cells and was increased 5- to 7-fold by the cyclic nucleotide. The maximal level was reached 3 h after addition of the nucleotide to the cell culture. This induction is attributed to cAMP since the nonmetabolizable analogs 8-bromocAMP and 8-(4-chlorophenylthio)cAMP produce inductions comparable to Bt2cAMP while sodium butyrate and dibutyryl cyclic GMP had little effect. The increased translational activity correlated well with a proportionate increase in the amount of phosphoenolpyruvate carboxykinase (P-enolpyruvate carboxykinase) mRNA sequences which were hybridizable to a specific cDNA probe. Blot hybridization of total nuclear RNA isolated from uninduced H4-II-E cells revealed eight P-enolpyruvate carboxykinase RNA sequence species ranging in size from 1.8 to 6.9 kilobases. Treatment with Bt2cAMP increased the amount of all eight of these forms. This increase became maximal by 45-60 min and was maintained for at least 1 h. In contrast, analysis of cytoplasmic RNA showed a single 3.2-kilobase (23 S) band, which was still increasing in amount 2 h after Bt2cAMP treatment. Thus, Bt2cAMP resulted in a sequential induction of nuclear P-enolpyruvate carboxykinase RNA sequences followed by an increase in cytoplasmic phosphoenolpyruvate carboxykinase mRNA. We conclude that cyclic AMP exerts its main effect on P-enolpyruvate carboxykinase induction at the nuclear level.  相似文献   
38.
The mRNA that codes for phosphoenolpyruvate carboxykinase accounts for approximately 0.2% of the protein synthesized in H4IIEC3 hepatoma cells maintained for 24 h in serum-free medium containing N6,O2'-dibutyryl cAMP and theophylline. This value decreases to 0.04% within 3 h after the addition of insulin. Maximal effects are produced by 10(-10) M insulin, and half-maximal deinduction of both the relative rate of synthesis of P-enolpyruvate carboxykinase and mRNA coding for P-enolpyruvate carboxykinase activity occurs at approximately 2 X 10(-12) M insulin. Porcine proinsulin is 4% as potent as porcine insulin since half-maximal deinduction of mRNA coding for P-enolpyruvate carboxykinase occurs at 5 X 10(-11) M. The concentration of proinsulin required to inhibit 125I-insulin binding by 50% is 2 X 10(-7) M, as compared to 6 X 10(-9) M for insulin; thus, the decreased sensitivity of this deinduction to proinsulin parallels the decreased binding affinity H4IIEC3 cells have for proinsulin as compared to insulin. These data indicate that insulin regulates P-enolpyruvate carboxykinase synthesis through a receptor-mediated process, that the effect occurs when less than 2% of the insulin receptors are occupied, and that this effect is exerted prior to the level of mRNA translation.  相似文献   
39.
The following evidence suggests that inhibition of hepatoma cell (HTC) growth by cyclic nucleotides is an adenosine-like effect that is greatly modified by the type and treatment of serum used in the culture medium and is probably not mediated by cyclic AMP-dependent protein kinase: 1) Heating serum reduces its phosphodiesterase content, thereby slowing metabolism of cyclic AMP and reducing the inhibition of HTC cell growth by cyclic AMP; 2) Using medium that contains phosphodiesterase but lacks adenosine deaminase causes adenosine to accumulate from cyclic AMP and increases the toxicity of cyclic AMP; 3) Uridine or cytidine reverses the growth inhibition caused by adenosine, 5'-AMP or cyclic AMP; 4) adenosine, 5'-AMP and N6-(delta 2-isopentenyl) adenosine are more toxic for HTC cells than is cyclic AMP, and N6,O2-dibutyryl cyclic AMP is not toxic; and 5) N6,O2'-dibutyryl cyclic AMP inhibits growth of Reuber H35 cells, but uridine prevents this inhibition of growth. We conclude that most, if not all, of the inhibitory effects of cyclic AMP and N6,O2'-dibutyryl cyclic AMP on HTc and Reuber H35 hepatoma cell growth are due to the generation of toxic metabolites.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号