首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1269篇
  免费   97篇
  1366篇
  2023年   6篇
  2022年   19篇
  2021年   32篇
  2020年   22篇
  2019年   34篇
  2018年   35篇
  2017年   29篇
  2016年   43篇
  2015年   83篇
  2014年   82篇
  2013年   108篇
  2012年   112篇
  2011年   96篇
  2010年   70篇
  2009年   55篇
  2008年   84篇
  2007年   71篇
  2006年   47篇
  2005年   50篇
  2004年   50篇
  2003年   43篇
  2002年   34篇
  2001年   8篇
  2000年   11篇
  1999年   6篇
  1998年   12篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1993年   7篇
  1991年   5篇
  1990年   4篇
  1988年   7篇
  1987年   8篇
  1986年   10篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1972年   2篇
  1970年   2篇
  1944年   3篇
  1936年   2篇
  1925年   4篇
  1924年   2篇
排序方式: 共有1366条查询结果,搜索用时 15 毫秒
991.
Physico-chemical properties of the mutations G34R, P39L and E41K in the N-terminal domain of human heat shock protein B1 (HspB1), which have been associated with hereditary motor neuron neuropathy, were analyzed. Heat-induced aggregation of all mutants started at lower temperatures than for the wild type protein. All mutations decreased susceptibility of the N- and C-terminal parts of HspB1 to chymotrypsinolysis. All mutants formed stable homooligomers with a slightly larger apparent molecular weight compared to the wild type protein. All mutations analyzed decreased or completely prevented phosphorylation-induced dissociation of HspB1 oligomers. When mixed with HspB6 and heated, all mutants yielded heterooligomers with apparent molecular weights close to ~400 kDa. Finally, the three HspB1 mutants possessed lower chaperone-like activity towards model substrates (lysozyme, malate dehydrogenase and insulin) compared to the wild type protein, conversely the environmental probe bis-ANS yielded higher fluorescence with the mutants than with the wild type protein. Thus, in vitro the analyzed N-terminal mutations increase stability of large HspB1 homooligomers, prevent their phosphorylation-dependent dissociation, modulate their interaction with HspB6 and decrease their chaperoning capacity, preventing normal functioning of HspB1.  相似文献   
992.
Cancer cells that are resistant to Bax/Bak-dependent intrinsic apoptosis can be eliminated by proteasome inhibition. Here, we show that proteasome inhibition induces the formation of high molecular weight platforms in the cytosol that serve to activate caspase-8. The activation complexes contain Fas-associated death domain (FADD) and receptor-interacting serine/threonine-protein kinase 1 (RIPK1). Furthermore, the complexes contain TRAIL-receptor 2 (TRAIL-R2) but not TRAIL-receptor 1 (TRAIL-R1). While RIPK1 inhibition or depletion did not affect proteasome inhibitor-induced cell death, TRAIL-R2 was found essential for efficient caspase-8 activation, since the loss of TRAIL-R2 expression abrogated caspase processing, significantly reduced cell death, and promoted cell re-growth after drug washout. Overall, our study provides novel insight into the mechanisms by which proteasome inhibition eliminates otherwise apoptosis-resistant cells, and highlights the crucial role of a ligand-independent but TRAIL-R2-dependent activation mechanism for caspase-8 in this scenario.Subject terms: Cell biology, Molecular biology, Experimental models of disease  相似文献   
993.
Yeast display is a powerful technology for the affinity maturation of human antibody fragments. However, the technology thus far has been limited by the size of antibody libraries that can be generated, as using current transformation protocols libraries of only between 10(6) and 10(7) are typically possible. We have recently shown that Fab antibodies can be displayed on the cell surface of Saccharomyces cerevisiae [van den Beucken, T., Pieters, H., Steukers, M., van der Vaart, M., Ladner, R.C., Hoogenboom, H.R., Hufton, S.E., 2003. Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett. 546, 288-294]. This discovery and the knowledge that Fab antibodies are heterodimeric suggest that independent repertoires of heavy chain (HC) and light chain (LC) can be constructed in haploid yeast strains of opposite mating type. These separate repertoires can then be combined by highly efficient yeast mating. Using this approach, we have rapidly generated a naive human Fab yeast display library of over 10(9) clones. In addition, utilizing error-prone polymerase chain reaction, we have diversified Fab sequences and generated combinatorial and hierarchical chain shuffled libraries with complexities of up to 5 x 10(9) clones. These libraries have been selected for higher affinity using a repeating process of mating-driven chain shuffling and flow cytometric sorting.  相似文献   
994.
Could some vaccines drive the evolution of more virulent pathogens? Conventional wisdom is that natural selection will remove highly lethal pathogens if host death greatly reduces transmission. Vaccines that keep hosts alive but still allow transmission could thus allow very virulent strains to circulate in a population. Here we show experimentally that immunization of chickens against Marek''s disease virus enhances the fitness of more virulent strains, making it possible for hyperpathogenic strains to transmit. Immunity elicited by direct vaccination or by maternal vaccination prolongs host survival but does not prevent infection, viral replication or transmission, thus extending the infectious periods of strains otherwise too lethal to persist. Our data show that anti-disease vaccines that do not prevent transmission can create conditions that promote the emergence of pathogen strains that cause more severe disease in unvaccinated hosts.  相似文献   
995.
Nature's best-known example of colorful, changeable, and diverse skin patterning is found in cephalopods. Color and pattern changes in squid skin are mediated by the action of thousands of pigmented chromatophore organs in combination with subjacent light-reflecting iridophore cells. Chromatophores (brown, red, yellow pigment) are innervated directly by the brain and can quickly expand and retract over underlying iridophore cells (red, orange, yellow, green, blue iridescence). Here, we present the first spectral account of the colors that are produced by the interaction between chromatophores and iridophores in squid (Loligo pealeii). Using a spectrometer, we have acquired highly focused reflectance measurements of chromatophores, iridophores, and the quality and quantity of light reflected when both interact. Results indicate that the light reflected from iridophores can be filtered by the chromatophores, enhancing their appearance. We have also measured polarization aspects of iridophores and chromatophores and show that, whereas structurally reflecting iridophores polarize light at certain angles, pigmentary chromatophores do not. We have further measured the reflectance change that iridophores undergo during physiological activity, from "off" to various degrees of "on", revealing specifically the way that colors shift from the longer end (infra-red and red) to the shorter (blue) end of the spectrum. By demonstrating that three color classes of pigments, combined with a single type of reflective cell, produce colors that envelop the whole of the visible spectrum, this study provides an insight into the optical mechanisms employed by the elaborate skin of cephalopods to give the extreme diversity that enables their dynamic camouflage and signaling.  相似文献   
996.
Farnesoid X receptor (FXR) is known to play important regulatory roles in bile acid, lipid, and carbohydrate metabolism. Aged (>12 months old) Fxr(-/-) mice also develop spontaneous liver carcinomas. In this report, we used three mouse models to investigate the role of FXR deficiency in obesity. As compared with low-density lipoprotein receptor (Ldlr) knockout (Ldlr(-/-)) mice, the Ldlr(-/-)Fxr(-/-) double-knockout mice were highly resistant to diet-induced obesity, which was associated with increased expression of genes involved in energy metabolism in the skeletal muscle and brown adipose tissue. Such a striking effect of FXR deficiency on obesity on an Ldlr(-/-) background led us to investigate whether FXR deficiency alone is sufficient to affect obesity. As compared with wild-type mice, Fxr(-/-) mice showed resistance to diet-induced weight gain. Interestingly, only female Fxr(-/-) mice showed significant resistance to diet-induced obesity, which was accompanied by increased energy expenditure in these mice. Finally, we determined the effect of FXR deficiency on obesity in a genetically obese and diabetic mouse model. We generated ob(-/-)Fxr(-/-) mice that were deficient in both Leptin and Fxr. On a chow diet, ob(-/-)Fxr(-/-) mice gained less body weight and had reduced body fat mass as compared with ob/ob mice. In addition, we observed liver carcinomas in 43% of young (<11 months old) Ob(-/-)Fxr(-/-) mice. Together these data indicate that loss of FXR prevents diet-induced or genetic obesity and accelerates liver carcinogenesis under diabetic conditions.  相似文献   
997.
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer''s disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron–glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment.  相似文献   
998.
The alimentary canal of the earthworm is representative of primitive gut ecosystems, and gut fermenters capable of degrading ingested biomass-derived polysaccharides might contribute to the environmental impact and survival of this terrestrial invertebrate. Thus, this study evaluated the postulation that gut microbiota of the model earthworm Lumbricus terrestris ferment diverse biomass-derived polysaccharides. Structural polysaccharides (e.g. cellulose, chitin) had marginal impact on fermentation in anoxic gut content treatments. In contrast, nonstructural polysaccharides (e.g. starch, glycogen) greatly stimulated (a) the formation of diverse fermentation products (e.g. H2, ethanol, fatty acids) and (b) the facultatively fermentative families Aeromonadaceae and Enterobacteriaceae. Despite these contrasting results with different polysaccharides, most saccharides derived from these biopolymers (e.g. glucose, N-acetylglucosamine) greatly stimulated fermentation, yielding 16S rRNA gene-based signatures of Aeromonadaceae-, Enterobacteriaceae- and Fusobacteriaceae-affiliated phylotypes. Roots and litter are dietary substrates of the earthworm, and as proof-of-principle, gut-associated fermenters responded rapidly to root- and litter-derived nutrients including saccharides. These findings suggest that (a) hydrolysis of certain ingested structural polysaccharides may be a limiting factor in the ability of gut fermenters to utilize them and (b) nonstructural polysaccharides of disrupted biomass are subject to rapid fermentation by gut microbes and yield fatty acids that can be utilized by the earthworm.  相似文献   
999.
Efficient sunlight‐driven water splitting devices can be achieved by pairing two absorbers of different optimized bandgaps in an optical tandem design. With tunable absorption ranges and cell voltages, organic–inorganic metal halide perovskite solar cells provide new opportunities for tailoring top absorbers for such devices. In this work, semitransparent perovskite solar cells are developed for use as the top cell in tandem with a smaller bandgap photocathode to enable panchromatic harvesting of the solar spectrum. A new CuInxGa1‐xSe2 multilayer photocathode is designed, exhibiting excellent performance for photoelectrochemical water reduction and representing a near‐ideal bottom absorber. When pairing it below a semitransparent CH3NH3PbBr3‐based solar cell, a solar‐to‐hydrogen efficiency exceeding 6% is achieved, the highest value yet reported for a photovoltaic–photoelectrochemical device utilizing a single‐junction solar cell as the bias source under one sun illumination. The analysis shows that the efficiency can reach more than 20% through further optimization of the perovskite top absorber.  相似文献   
1000.
Clathrin-coated vesicles mediate endocytosis and transport between the trans-Golgi network (TGN) and endosomes in eukaryotic cells. Clathrin adaptors play central roles in coat assembly, interacting with clathrin, cargo and membranes. Two main types of clathrin adaptor act in TGN-endosome traffic: GGA proteins and the AP-1 complex. Here we characterize the relationship between GGA proteins, AP-1 and other TGN clathrin adaptors using live-cell and super-resolution microscopy in yeast. We present evidence that GGA proteins and AP-1 are recruited sequentially in two waves of coat assembly at the TGN. Mutations that decrease phosphatidylinositol 4-phosphate (PtdIns(4)P) levels at the TGN slow or uncouple AP-1 coat assembly from GGA coat assembly. Conversely, enhanced PtdIns(4)P synthesis shortens the time between adaptor waves. Gga2p binds directly to the TGN PtdIns(4)-kinase Pik1p and contributes to Pik1p recruitment. These results identify a PtdIns(4)P-based mechanism for regulating progressive assembly of adaptor-specific clathrin coats at the TGN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号