首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8879篇
  免费   908篇
  国内免费   3篇
  2021年   131篇
  2020年   75篇
  2019年   101篇
  2018年   124篇
  2017年   108篇
  2016年   200篇
  2015年   291篇
  2014年   358篇
  2013年   439篇
  2012年   489篇
  2011年   533篇
  2010年   349篇
  2009年   321篇
  2008年   458篇
  2007年   458篇
  2006年   399篇
  2005年   374篇
  2004年   401篇
  2003年   369篇
  2002年   361篇
  2001年   170篇
  2000年   171篇
  1999年   168篇
  1998年   130篇
  1997年   111篇
  1996年   118篇
  1995年   97篇
  1994年   84篇
  1993年   97篇
  1992年   128篇
  1991年   122篇
  1990年   123篇
  1989年   87篇
  1988年   84篇
  1987年   92篇
  1986年   71篇
  1985年   95篇
  1984年   95篇
  1983年   86篇
  1982年   76篇
  1981年   73篇
  1980年   64篇
  1979年   52篇
  1978年   63篇
  1976年   54篇
  1975年   52篇
  1974年   55篇
  1973年   48篇
  1972年   46篇
  1971年   46篇
排序方式: 共有9790条查询结果,搜索用时 0 毫秒
141.
There seems to be a widespread conviction — evidenced, for example, in the work of Mackie, Dawkins and Sober — that it is Darwinian rather than Humean considerations which deal the fatal logical blow to arguments for intelligent design. I argue that this conviction cannot be well-founded. If there are current logically decisive objections to design arguments, they must be Humean — for Darwinian considerations count not at all against design arguments based upon apparent cosmological fine-tuning. I argue, further, that there are good Humean reasons for atheists and agnostics to resist the suggestion that apparent design — apparent biological design and/or apparent cosmological fine-tuning — establishes (or even strongly supports) the hypothesis of intelligent design.  相似文献   
142.
A crown rot disease in wheat caused by the fungusFusarium graminearum Schw. Group 1 is a widespread problem in chronically Zn-deficient Australian soils. A link between crown rot and Zn deficiency was established by Sparrow and Graham (1988). This paper reports a test of a further hypothesis, that wheat genotypes more efficient at extracting zinc from low-zinc soils are more resistant to infection by this pathogen. Three wheat cultivars (Excalibur, Songlen and Durati) of differential Zn efficiency were tested at three zinc levels (0.05, 0.5 and 2.0 mg Zn kg−1 of soil) and three levels ofF. graminearum S. Group 1 inoculum (0.1 g and 0.3 g kg−1 live chaff-inoculum and control having 0.1 g kg−1 dead chaff inoculum). Six weeks after sowing dry matter production of shoots and roots was decreased byFusarium inoculation at 0.05 mg and 0.5 mg kg−1 applied Zn.Fusarium inoculum at 0.1 g was as effective as 0.3 g kg−1 for infection and decreasing dry matter. The infection at the basal part of culm decreased significantly by increasing the rate of Zn application. Excalibur, a Zn-efficient cultivar (tolerant to Zn deficiency) produced significantly more shoot and root dry matter, and showed less disease infection compared with Zn-inefficient cultivars (Durati and Songlen) at low (0.05 mg Zn kg−1 soil) and medium (0.5 mg Zn kg−1 soil) Zn fertilization rates. Higher rate of Zn fertilization (2.0 mg Zn kg−1 soil) reduced the disease level in Durati to the level of Excalibur but the disease level of Songlen was still high, indicating its high Zn requirement and or sensitivity to crown rot. The data on Zn uptake show that Excalibur, being Zn-efficient, was able to scavenge enough Zn from Zn-deficient soil, we suggest that besides sustaining growth Excalibur was able to build and maintain resistance to the pathogen; inefficient cultivars needed extra Zn fertilization to achieve performance comparable to that of Excalibur. The present study indicates that growing Zn-efficient cultivars of wheat along with judicious use of Zn fertilizer in Zn-deficient areas where crown rot is a problem may sustain wheat production by reducing the severity of the disease as well as by increasing the plant vigour through improved Zn nutrition. ei]Section editor: R Rodriques-Kalana  相似文献   
143.
Fibroblast growth factor receptor 2 (FGFR2) mutations have been associated with the craniosynostotic conditions Crouzon, Jackson-Weiss, and Pfeiffer syndromes. Previously, mutations were described in the exons IIIa and IIIc, which form the extracellular, third immunoglobulin-like domain (IgIII) and adjacent linker regions, both of which are normally involved in ligand binding. For all three conditions, mutations were found in exon IIIc. Only in Crouzon syndrome were mutations identified in exon IIIa. In this study, 39 cases with one of these three conditions were screened for exon IIIa or IIIc mutations. Eleven mutations are reported in 17 unrelated cases. Mutations in exon IIIa are identified for not only Crouzon but also Jackson-Weiss and Pfeiffer syndromes. Four mutations in either exon IIIa or exon IIIc reported only in Crouzon syndrome are present also in one of the other two syndromes. Two insertions, one in exon IIIa in a Crouzon syndrome patient and the other in exon IIIc in a Pfeiffer syndrome patient, were observed. The latter mutation has the same alternative RNA splicing effect as a reported synonymous mutation for Crouzon syndrome. A missense mutation was detected in one Pfeiffer syndrome family in which two members had craniosynostosis without limb anomalies. The inter- and intrafamilial variability in expression of FGFR2 mutations suggests that these three syndromes, presumed to be clinically distinct, are instead representative of a spectrum of related craniosynostotic and digital disorders.  相似文献   
144.
145.
Amplification of thebar gene usingTaq DNA polymerase in PCR is often not successful, possibly due tobar's high GC content. We describe a PCR protocol in which reliable amplification at a sensitivity of one gene copy per genome (in this study, barley) present in the reaction was achieved using a novel pair of primers and Expandtm High Fidelity DNA polymerase mix (Boehringer Mannheim). This method should allow for rapid screening of plants putatively transformed withbar.  相似文献   
146.
Summary The continued release of caesium radioisotopes into the environment has led to a resurgence of interest in microbe-Cs interactions. Caesium exists almost exclusively as the monovalent cation Cs+ in the natural environment. Although Cs+ is a weak Lewis acid that exhibits a low tendency to form complexes with ligands, its chemical similarity to the biologically essential alkali cation K+ facilitates high levels of metabolism-dependent intracellular accumulation. Microbial Cs+ (K+) uptake is generally mediated by monovalent cation transport systems located on the plasma membrane. These differe widely in specificity for alkali cations and consequently microorganisms display large differences in their ability to accumulate Cs+; Cs+ appears to have an equal or greater affinity than K+ for transport in certain microorganisms. Microbial Cs+ accumulation is markedly influenced by the presence of external cations, e.g. K+, Na+, NH4 + and H+, and is generally accompanied by an approximate stoichiometric exchange for intracellular K+. However, stimulation of growth of K+-starved microbial cultures by Cs+ is limited and its has been proposed that it is not the presence of Cs+ in cells that is growth inhibitory but rather the resulting loss of K+. Increased microbial tolerance to Cs+ may result from sequestration of Cs+ in vacuoles or changes in the activity and/or specificity of transport systems mediating Cs+ uptake. The precise intracellular target(s) for Cs+-induced toxicity has yet to be clearly defined, although certain internal structures, e.g. ribosomes, become unstable in the presence of Cs+ and Cs+ is known to substitute poorly for K+ in the activation of many K+-requiring enzymes.  相似文献   
147.
148.
149.
150.
This work describes protocols for the production of single-chain antibody and T-cell receptor fragments inE. coli. A choice of methods is given for the purification of the recombinant fragments that rely on the use of either immunoaffinity or metal chelate affinity chromatography. The TCR fragments may have to be denatured and refolded before the fragments attain their proper conformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号