首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   25篇
  2023年   2篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   9篇
  2015年   7篇
  2014年   4篇
  2013年   12篇
  2012年   10篇
  2011年   10篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   11篇
  2006年   5篇
  2005年   9篇
  2004年   6篇
  2003年   14篇
  2002年   8篇
  2001年   5篇
  2000年   6篇
  1999年   8篇
  1998年   8篇
  1997年   3篇
  1995年   2篇
  1994年   4篇
  1992年   4篇
  1991年   7篇
  1989年   11篇
  1988年   4篇
  1987年   8篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   6篇
  1978年   9篇
  1976年   2篇
  1974年   3篇
  1972年   3篇
  1971年   3篇
  1969年   2篇
  1968年   6篇
  1967年   4篇
  1965年   6篇
  1930年   1篇
排序方式: 共有291条查询结果,搜索用时 46 毫秒
121.
The cytoplasmic tyrosine kinase p72syk (Syk) plays an essential role in signaling via a variety of immune and nonimmune cell receptors. Syk is activated in response to the engagement of the appropriate cell surface receptors and can phosphorylate downstream targets and recruit additional SH2-domain-containing proteins. In order to study the characteristics of Syk in vitro, we have overexpressed untagged, full-length human Syk in a recombinant baculovirus expression system. The enzyme was purified to 95% purity using a novel two-step affinity chromatography process using reactive yellow and phosphotyrosine columns. Yields of 3-10 mg purified Syk were obtained from 1 liter of infected insect cells. Western blotting, internal protein sequencing, and the specific tyrosine phosphorylation of a Syk peptide substrate indicated authenticity of the purified protein. The enzymatic properties of Syk were in good agreement with published data for the human enzyme, as the apparent K(m) of Syk for ATP was 10 microM and the peptide substrate was 3 microM. The recombinant protein also showed similar biochemical characteristics to the native protein isolated from B-cells such as autophosphorylation. Proteolytic cleavage of purified recombinant Syk was used to generate the kinase domain by micro-calpain. We therefore describe an efficient expression system and purification methodology to produce biologically active human Syk.  相似文献   
122.
Distinct species of Leishmania, a protozoan parasite of the family Trypanosomatidae, typically cause different human disease manifestations. The most common forms of disease are visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). Mouse models of leishmaniasis are widely used, but quantification of parasite burdens during murine disease requires mice to be euthanized at various times after infection. Parasite loads are then measured either by microscopy, limiting dilution assay, or qPCR amplification of parasite DNA. The in vivo imaging system (IVIS) has an integrated software package that allows the detection of a bioluminescent signal associated with cells in living organisms. Both to minimize animal usage and to follow infection longitudinally in individuals, in vivo models for imaging Leishmania spp. causing VL or CL were established. Parasites were engineered to express luciferase, and these were introduced into mice either intradermally or intravenously. Quantitative measurements of the luciferase driving bioluminescence of the transgenic Leishmania parasites within the mouse were made using IVIS. Individual mice can be imaged multiple times during longitudinal studies, allowing us to assess the inter-animal variation in the initial experimental parasite inocula, and to assess the multiplication of parasites in mouse tissues. Parasites are detected with high sensitivity in cutaneous locations. Although it is very likely that the signal (photons/second/parasite) is lower in deeper visceral organs than the skin, but quantitative comparisons of signals in superficial versus deep sites have not been done. It is possible that parasite numbers between body sites cannot be directly compared, although parasite loads in the same tissues can be compared between mice. Examples of one visceralizing species (L. infantum chagasi) and one species causing cutaneous leishmaniasis (L. mexicana) are shown. The IVIS procedure can be used for monitoring and analyzing small animal models of a wide variety of Leishmania species causing the different forms of human leishmaniasis.Download video file.(95M, mp4)  相似文献   
123.
124.
Monoclonal antibodies (Mabs) are a favorite drug platform of the biopharmaceutical industry. Currently, over 20 Mabs have been approved and several hundred others are in clinical trials. The anti‐LINGO‐1 Mab Li33 was selected from a large panel of antibodies by Fab phage display technology based on its extraordinary biological activity in promoting oligodendrocyte differentiation and myelination in vitro and in animal models of remyelination. However, the Li33 Fab had poor solubility when converted into a full antibody in an immunoglobulin G1 framework. A detailed analysis of the biochemical and structural features of the antibody revealed several possible reasons for its propensity to aggregate. Here, we successfully applied three molecular approaches (isotype switching, targeted mutagenesis of complementarity determining region residues, and glycosylation site insertion mutagenesis) to address the solubility problem. Through these efforts we were able to improve the solubility of the Li33 Mab from 0.3 mg/mL to >50 mg/mL and reduce aggregation to an acceptable level. These strategies can be readily applied to other proteins with solubility issues.  相似文献   
125.
In periodontitis, polymorphonuclear leucocytes (PMNs) are activated. They entrap and eliminate pathogens by releasing neutrophil extracellular traps (NETs). Abnormal NET degradation is part of a pro-inflammatory status, affecting co-morbidities such as cardiovascular disease. We aimed to investigate the ex vivo NET degradation capacity of plasma from periodontitis patients compared to controls (part 1) and to quantify NET degradation before and after periodontal therapy (part 2). Fresh NETs were obtained by stimulating blood-derived PMNs with phorbol 12-myristate 13-acetate. Plasma samples from untreated periodontitis patients and controls were incubated for 3 h onto freshly generated NETs (part 1). Similarly, for part 2, NET degradation was studied for 91 patients before and 3, 6 and 12 mo after non-surgical periodontal therapy with and without adjunctive systemic antibiotics. Finally, NET degradation was fluorospectrometrically quantified. NET degradation levels did not differ between periodontitis patients and controls, irrespective of subject-related background characteristics. NET degradation significantly increased from 65.6 ± 1.7% before periodontal treatment to 75.7 ± 1.2% at 3 mo post periodontal therapy, and this improvement was maintained at 6 and 12 mo, irrespective of systemic usage of antibiotics. Improved NET degradation after periodontitis treatment is another systemic biomarker reflecting a decreased pro-inflammatory status, which also contributes to an improved cardiovascular condition.  相似文献   
126.
127.
128.
129.
The mechanical unfolding of a set of 12 proteins with diverse topologies is investigated using an all-atom constraint-based model. Proteins are represented as polypeptides cross-linked by hydrogen bonds, salt bridges, and hydrophobic contacts, each modeled as a harmonic inequality constraint capable of supporting a finite load before breaking. Stereochemically acceptable unfolding pathways are generated by minimally overloading the network in an iterative fashion, analogous to crack propagation in solids. By comparing the pathways to those from molecular dynamics simulations and intermediates identified from experiment, it is demonstrated that the dominant unfolding pathways for 9 of the 12 proteins studied are well described by crack propagation in a network.  相似文献   
130.
Wnt/β-catenin signaling is a critical regulator of skeletal physiology. However, previous studies have mainly focused on its roles in osteoblasts, while its specific function in osteoclasts is unknown. This is a clinically important question because neutralizing antibodies against Wnt antagonists are promising new drugs for bone diseases. Here, we show that in osteoclastogenesis, β-catenin is induced during the macrophage colony-stimulating factor (M-CSF)-mediated quiescence-to-proliferation switch but suppressed during the RANKL-mediated proliferation-to-differentiation switch. Genetically, β-catenin deletion blocks osteoclast precursor proliferation, while β-catenin constitutive activation sustains proliferation but prevents osteoclast differentiation, both causing osteopetrosis. In contrast, β-catenin heterozygosity enhances osteoclast differentiation, causing osteoporosis. Biochemically, Wnt activation attenuates whereas Wnt inhibition stimulates osteoclastogenesis. Mechanistically, β-catenin activation increases GATA2/Evi1 expression but abolishes RANKL-induced c-Jun phosphorylation. Therefore, β-catenin exerts a pivotal biphasic and dosage-dependent regulation of osteoclastogenesis. Importantly, these findings suggest that Wnt activation is a more effective treatment for skeletal fragility than previously recognized that confers dual anabolic and anti-catabolic benefits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号