首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9213篇
  免费   653篇
  国内免费   462篇
  2024年   10篇
  2023年   81篇
  2022年   191篇
  2021年   327篇
  2020年   236篇
  2019年   268篇
  2018年   290篇
  2017年   234篇
  2016年   328篇
  2015年   470篇
  2014年   595篇
  2013年   652篇
  2012年   757篇
  2011年   724篇
  2010年   421篇
  2009年   381篇
  2008年   439篇
  2007年   424篇
  2006年   374篇
  2005年   362篇
  2004年   301篇
  2003年   304篇
  2002年   246篇
  2001年   203篇
  2000年   196篇
  1999年   167篇
  1998年   112篇
  1997年   102篇
  1996年   105篇
  1995年   105篇
  1994年   79篇
  1993年   81篇
  1992年   128篇
  1991年   101篇
  1990年   76篇
  1989年   74篇
  1988年   69篇
  1987年   50篇
  1986年   41篇
  1985年   53篇
  1984年   33篇
  1983年   24篇
  1982年   19篇
  1981年   10篇
  1979年   10篇
  1977年   9篇
  1976年   7篇
  1971年   7篇
  1970年   7篇
  1966年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Gu XY  Kianian SF  Foley ME 《Genetics》2004,166(3):1503-1516
Weedy rice has much stronger seed dormancy than cultivated rice. A wild-like weedy strain SS18-2 was selected to investigate the genetic architecture underlying seed dormancy, a critical adaptive trait in plants. A framework genetic map covering the rice genome was constructed on the basis of 156 BC(1) [EM93-1 (nondormant breeding line)//EM93-1/SS18-2] individuals. The mapping population was replicated using a split-tiller technique to control and better estimate the environmental variation. Dormancy was determined by germination of seeds after 1, 11, and 21 days of after-ripening (DAR). Six dormancy QTL, designated as qSD(S)-4, -6, -7-1, -7-2, -8, and -12, were identified. The locus qSD(S)-7-1 was tightly linked to the red pericarp color gene Rc. A QTL x DAR interaction was detected for qSD(S)-12, the locus with the largest main effect at 1, 11, and 21 DAR (R(2) = 0.14, 0.24, and 0.20, respectively). Two, three, and four orders of epistases were detected with four, six, and six QTL, respectively. The higher-order epistases strongly suggest the presence of genetically complex networks in the regulation of variation for seed dormancy in natural populations and make it critical to select for a favorable combination of alleles at multiple loci in positional cloning of a target dormancy gene.  相似文献   
992.
The protein TA0175 has a large number of sequence homologues, most of which are annotated as unknown and a few as belonging to the haloacid dehalogenase superfamily, but has no known biological function. Using a combination of amino acid sequence analysis, three-dimensional crystal structure information, and kinetic analysis, we have characterized TA0175 as phosphoglycolate phosphatase from Thermoplasma acidophilum. The crystal structure of TA0175 revealed two distinct domains, a larger core domain and a smaller cap domain. The large domain is composed of a centrally located five-stranded parallel beta-sheet with strand order S10, S9, S8, S1, S2 and a small beta-hairpin, strands S3 and S4. This central sheet is flanked by a set of three alpha-helices on one side and two helices on the other. The smaller domain is composed of an open faced beta-sandwich represented by three antiparallel beta-strands, S5, S6, and S7, flanked by two oppositely oriented alpha-helices, H3 and H4. The topology of the large domain is conserved; however, structural variation is observed in the smaller domain among the different functional classes of the haloacid dehalogenase superfamily. Enzymatic assays on TA0175 revealed that this enzyme catalyzed the dephosphorylation of phosphoglycolate in vitro with similar kinetic properties seen for eukaryotic phosphoglycolate phosphatase. Activation by divalent cations, especially Mg2+, and competitive inhibition behavior with Cl- ions are similar between TA0175 and phosphoglycolate phosphatase. The experimental evidence presented for TA0175 is indicative of phosphoglycolate phosphatase.  相似文献   
993.
Wnts are morphogens with well recognized functions during embryogenesis. Aberrant Wnt signaling has been demonstrated to be important in colorectal carcinogenesis. However, the role of Wnt in regulating normal intestinal epithelial cell proliferation is not well established. Here we determine that Wnt11 is expressed throughout the mouse intestinal tract including the epithelial cells. Conditioned media from Wnt11-secreting cells stimulated proliferation and migration of IEC6 intestinal epithelial cells. Co-culture of Wnt11-secreting cells with IEC6 cells resulted in morphological transformation of the latter as evidenced by the formation of foci, a condition also accomplished by stable transfection of IEC6 with a Wnt11-expressing construct. Treatment of IEC6 cells with Wnt11 conditioned media failed to induce nuclear translocation of beta-catenin but led to increased activities of protein kinase C and Ca(2+)/calmodulin-dependent protein kinase II. Inhibition of protein kinase C resulted in a decreased ability of Wnt11 to induce foci formation in IEC6 cells. Finally, E-cadherin was redistributed in Wnt11-treated IEC6 cells, resulting in diminished E-cadherin-mediated cell-cell contact. We conclude that Wnt11 stimulates proliferation, migration, cytoskeletal rearrangement, and contact-independent growth of IEC6 cells by a beta-catenin-independent mechanism. These findings may help understand the molecular mechanisms that regulate proliferation and migration of intestinal epithelial cells.  相似文献   
994.
The Crc protein is involved in the repression of several catabolic pathways for the assimilation of some sugars, nitrogenated compounds, and hydrocarbons in Pseudomonas putida and Pseudomonas aeruginosa when other preferred carbon sources are present in the culture medium (catabolic repression). Crc appears to be a component of a signal transduction pathway modulating carbon metabolism in pseudomonads, although its mode of action is unknown. To better understand the role of Crc, the proteome profile of two otherwise isogenic P. putida strains containing either a wild-type or an inactivated crc allele was compared. The results showed that Crc is involved in the catabolic repression of the hpd and hmgA genes from the homogentisate pathway, one of the central catabolic pathways for aromatic compounds that is used to assimilate intermediates derived from the oxidation of phenylalanine, tyrosine, and several aromatic hydrocarbons. This led us to analyze whether Crc also regulates the expression of the other central catabolic pathways for aromatic compounds present in P. putida. It was found that genes required to assimilate benzoate through the catechol pathway (benA and catBCA) and 4-OH-benzoate through the protocatechuate pathway (pobA and pcaHG) are also negatively modulated by Crc. However, the pathway for phenylacetate appeared to be unaffected by Crc. These results expand the influence of Crc to pathways used to assimilate several aromatic compounds, which highlights its importance as a master regulator of carbon metabolism in P. putida.  相似文献   
995.
Protein-tyrosine phosphatase 1B (PTP-1B) is the prototypic tyrosine phosphatase whose function in insulin signaling and metabolism is well established. Although the role of PTP-1B in dephosphorylating various cell surface receptor tyrosine kinases is clear, the mechanisms by which it modulates receptor function from the endoplasmic reticulum (ER) remains an enigma. Here, we provide evidence that PTP-1B has an essential function in regulating the unfolded protein response in the ER compartment. The absence of PTP-1B caused impaired ER stress-induced IRE1 signaling. More specifically, JNK activation, XBP-1 splicing, and EDEM (ER degradation-enhancing alpha-mannosidase-like protein) gene induction, as well as ER stress-induced apoptosis, were attenuated in PTP-1B knock-out mouse embryonic fibroblasts in response to two ER stressors, tunicamycin and azetidine-2 carboxylic acid. We demonstrate that PTP-1B is not just a passive resident of the ER but on the contrary has an essential role in potentiating IRE1-mediated ER stress signaling pathways.  相似文献   
996.
Methionine aminopeptidase (MetAP) catalyzes the removal of methionine from newly synthesized polypeptides. MetAP carries out this cleavage with high precision, and Met is the only natural amino acid residue at the N terminus that is accepted, although type I and type II MetAPs use two different sets of residues to form the hydrophobic S1 site. Characteristics of the S1 binding pocket in type I MetAP were investigated by systematic mutation of each of the seven S1 residues in Escherichia coli MetAP type I (EcMetAP1) and human MetAP type I (HsMetAP1). We found that Tyr-65 and Trp-221 in EcMetAP1, as well as the corresponding residues Phe-197 and Trp-352 in HsMetAP1, were essential for the hydrolysis of a thiopeptolide substrate, Met-S-Gly-Phe. Mutation of Phe-191 to Ala in HsMetAP1 caused inactivity in contrast to the full activity of EcMetAP1(Y62A), which may suggest a subtle difference between the two type I enzymes. The more striking finding is that mutation of Cys-70 in EcMetAP1 or Cys-202 in HsMetAP1 opens up the S1 pocket. The thiopeptolides Leu-S-Gly-Phe and Phe-S-Gly-Phe, with previously unacceptable Leu or Phe as the N-terminal residue, became efficient substrates of EcMetAP1(C70A) and HsMetAP1(C202A). The relaxed specificity shown in these S1 site mutants for the N-terminal residues was confirmed by hydrolysis of peptide substrates and inhibition by reaction products. The structural features at the enzyme active site will be useful information for designing specific MetAP inhibitors for therapeutic applications.  相似文献   
997.
The phosphatidylinositol 4,5-bisphosphate (PIP(2))-sensitive inward rectifier channel Kir2.1 was expressed in Drosophila photoreceptors and used to monitor in vivo PIP(2) levels. Since the wild-type (WT) Kir2.1 channel appeared to be saturated by the prevailing PIP(2) concentration, we made a single amino acid substitution (R228Q), which reduced the effective affinity for PIP(2) and yielded channels generating currents proportional to the PIP(2) levels relevant for phototransduction. To isolate Kir2.1 currents, recordings were made from mutants lacking both classes of light-sensitive transient receptor potential channels (TRP and TRPL). Light resulted in the effective depletion of PIP(2) by phospholipase C (PLC) in approximately three or four microvilli per absorbed photon at rates exceeding approximately 150% of total microvillar phosphoinositides per second. PIP(2) was resynthesized with a half-time of approximately 50 s. When PIP(2) resynthesis was prevented by depriving the cell of ATP, the Kir current spontaneously decayed at maximal rates representing a loss of approximately 40% loss of total PIP(2) per minute. This loss was attributed primarily to basal PLC activity, because it was greatly decreased in norpA mutants lacking PLC. We tried to confirm this by using the PLC inhibitor U73122; however, this was found to act as a novel inhibitor of the Kir2.1 channel. PIP(2) levels were reduced approximately 5-fold in the diacylglycerol kinase mutant (rdgA), but basal PLC activity was still pronounced, consistent with the suggestion that raised diacylglycerol levels are responsible for the constitutive TRP channel activity characteristic of this mutant.  相似文献   
998.
A 30-year-old male patient with mild mental retardation was found to have a small supernumerary marker chromosome (SMC) in 90% of his peripheral blood cells and in 100% of his fibroblast cells. Multiplex whole chromosome and sub-telomere FISH analyses were used to determine that this SMC is an inverted duplicated distal chromosome 8p fragment. Although it was negative for alpha-DNA sequences, this marker had a functional kinetochore (neocentromere) demonstrated by a positive signal with a CENP-C antibody. Apparently intact 8p telomeres at the marker's ends were demonstrated by using a telomere repeat FISH probe. The patient's phenotypically normal mother on G-banding analysis had a small marker chromosome in 8% of her peripheral blood cells in two cultures of the first specimen studied. The marker was not seen in any subsequent maternal peripheral blood or fibroblast specimens. Although it was impossible to further characterize the maternal SMC, it was suggested that the mother had the same marker as the one seen in the proband. Inverted duplicated chromosomal fragments are the most frequent type of analphoid markers. Stable inverted duplicated 8p marker chromosomes were previously reported in three other patients. They all apparently occurred de novo and were found to be positive for kinetochore-associated proteins. Evidence for the possible inheritance of an inverted-duplicated, analphoid SMC was not shown to-date. This study also demonstrates a practical, straightforward approach for analphoid marker characterization in clinical laboratory settings, using whole chromosome multiplex and subtelomere-specific FISH analyses. FISH probes for all sub-telomere chromosomal regions are commercially available and the large majority of analphoid marker chromosomes involve telomere regions.  相似文献   
999.
1000.
Li D  Xiao Y  Xu X  Xiong X  Lu S  Liu Z  Zhu Q  Wang M  Gu X  Liang S 《The Journal of biological chemistry》2004,279(36):37734-37740
Hainantoxin-IV (HNTX-IV) can specifically inhibit the neuronal tetrodotoxin-sensitive sodium channels and defines a new class of depressant spider toxin. The sequence of native HNTX-IV is ECLGFGKGCNPSNDQCCKSSNLVCSRKHRWCKYEI-NH(2). In the present study, to obtain further insight into the primary and tertiary structural requirements of neuronal sodium channel blockers, we determined the solution structure of HNTX-IV as a typical inhibitor cystine knot motif and synthesized four mutants designed based on the predicted sites followed by structural elucidation of two inactive mutants. Pharmacological studies indicated that the S12A and R26A mutants had activities near that of native HNTX-IV, while K27A and R29A demonstrated activities reduced by 2 orders of magnitude. (1)H MR analysis showed the similar molecular conformations for native HNTX-IV and four synthetic mutants. Furthermore, in the determined structures of K27A and R29A, the side chains of residues 27 and 29 were located in the identical spatial position to those of native HNTX-IV. These results suggested that residues Ser(12), Arg(26), Lys(27), and Arg(29) were not responsible for stabilizing the distinct conformation of HNTX-IV, but Lys(27) and Arg(29) were critical for the bioactivities. The potency reductions produced by Ala substitutions were primarily due to the direct interaction of the essential residues Lys(27) and Arg(29) with sodium channels rather than to a conformational change. After comparison of these structures and activities with correlated toxins, we hypothesized that residues Lys(27), Arg(29), His(28), Lys(32), Phe(5), and Trp(30) clustered on one face of HNTX-IV were responsible for ligand binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号