首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2247篇
  免费   173篇
  国内免费   4篇
  2424篇
  2023年   11篇
  2022年   51篇
  2021年   82篇
  2020年   31篇
  2019年   56篇
  2018年   48篇
  2017年   37篇
  2016年   70篇
  2015年   125篇
  2014年   102篇
  2013年   144篇
  2012年   162篇
  2011年   146篇
  2010年   87篇
  2009年   74篇
  2008年   115篇
  2007年   108篇
  2006年   105篇
  2005年   92篇
  2004年   87篇
  2003年   74篇
  2002年   83篇
  2001年   24篇
  2000年   19篇
  1999年   16篇
  1998年   32篇
  1997年   12篇
  1996年   16篇
  1995年   22篇
  1994年   10篇
  1993年   10篇
  1992年   12篇
  1991年   12篇
  1990年   17篇
  1989年   18篇
  1988年   11篇
  1987年   12篇
  1985年   14篇
  1984年   10篇
  1983年   15篇
  1982年   25篇
  1981年   24篇
  1980年   14篇
  1977年   11篇
  1976年   11篇
  1975年   10篇
  1974年   12篇
  1973年   12篇
  1970年   13篇
  1969年   12篇
排序方式: 共有2424条查询结果,搜索用时 15 毫秒
91.
A microsatellite linkage map of Barramundi, Lates calcarifer   总被引:3,自引:0,他引:3       下载免费PDF全文
Wang CM  Zhu ZY  Lo LC  Feng F  Lin G  Yang WT  Li J  Yue GH 《Genetics》2007,175(2):907-915
Barramundi (Lates calcarifer) is an important farmed marine food fish species. Its compact genome (approximately 700 Mb) is among the smallest genomes of food fish species. We established a first-generation genetic linkage map of Barramundi with a mapping panel containing three parents (two males and one female) and 93 progeny. A total of 240 microsatellite markers were mapped into 24 linkage groups. Among these markers, 10 were located in ESTs and known genes. The total lengths of the female and male maps were 873.8 and 414.5 cM with an average marker spacing of 6.20 and 4.70 cM, respectively. Comparing the flanking sequences of the 240 Barramundi microsatellites with the assembled whole-genome sequences of Tetraodon nigrovidiris revealed 55 homologous sequences located in 19 of the 21 chromosomes of T. nigrovidiris. The map will not only enable the mapping of quantitative trait loci, but also provide new resources for understanding the evolution of fish genomes.  相似文献   
92.
Yue GH  Xia JH  Liu F  Lin G 《PloS one》2012,7(6):e37976
Movement of individuals influences individual reproductive success, fitness, genetic diversity and relationships among individuals within populations and gene exchange among populations. Competition between males or females for mating opportunities and/or local resources predicts a female bias in taxa with monogamous mating systems and a male-biased dispersal in polygynous species. In birds and mammals, the patterns of dispersal between sexes are well explored, while dispersal patterns in protandrous hermaphroditic fish species have not been studied. We collected 549 adult individuals of Asian seabass (Lates calcarifer) from four locations in the South China Sea. To assess the difference in patterns of dispersal between sexes, we genotyped all individuals with 18 microsatellites. Significant genetic differentiation was detected among and within sampling locations. The parameters of population structure (F(ST)), relatedness (r) and the mean assignment index (mAIC), in combination with data on tagging-recapture, supplied strong evidences for female-biased dispersal in the Asian seabass. This result contradicts our initial hypothesis of no sex difference in dispersal. We suggest that inbreeding avoidance of females, female mate choice under the condition of low mate competition among males, and male resource competition create a female-biased dispersal. The bigger body size of females may be a cause of the female-biased movement. Studies of dispersal using data from DNA markers and tagging-recapture in hermaphroditic fish species could enhance our understanding of patterns of dispersal in fish.  相似文献   
93.
The nautilus, commonly known as a “living fossil,” is endangered and may be at risk of extinction. The lack of genomic information hinders a thorough understanding of its biology and evolution, which can shed light on the conservation of this endangered species. Here, we report the first high-quality chromosome-level genome assembly of Nautilus pompilius. The assembled genome size comprised 785.15 Mb. Comparative genomic analyses indicated that transposable elements (TEs) and large-scale genome reorganizations may have driven lineage-specific evolution in the cephalopods. Remarkably, evolving conserved genes and recent TE insertion activities were identified in N. pompilius, and we speculate that these findings reflect the strong adaptability and long-term survival of the nautilus. We also identified gene families that are potentially responsible for specific adaptation and evolution events. Our study provides unprecedented insights into the specialized biology and evolution of N. pompilius, and the results serve as an important resource for future conservation genomics of the nautilus and closely related species.  相似文献   
94.
Supplement of 1% lithocholic acid (LCA) in the diet for 5-9 days resulted in elevated levels of the marker for liver damage aspartate aminotransferase and alkaline phosphatase activities in both farnesoid X receptor (FXR)-null and wild-type female mice. The levels were clearly higher in wild-type mice than in FXR-null mice, despite the diminished expression of a bile salt export pump in the latter. Consistent with liver toxicity marker activities, serum and liver levels of bile acids, particularly LCA and taurolithocholic acid, were clearly higher in wild-type mice than in FXR-null mice after 1% LCA supplement. Marked increases in hepatic sulfating activity for LCA (5.5-fold) and hydroxysteroid sulfotransferase (St) 2a (5.8-fold) were detected in liver of FXR-null mice. A 7.4-fold higher 3alpha-sulfated bile acid concentration was observed in bile of FXR-null mice fed an LCA diet compared with that of wild-type mice. Liver St2a content was inversely correlated with levels of alkaline phosphatase. In contrast, microsomal LCA 6beta-hydroxylation was not increased and was in fact lower in FXR-null mice compared in wild-type mice. Clear decreases in mRNA encoding sodium taurocholate cotransporting polypeptide, organic anion transporting polypeptide 1, and liver-specific organic anion transporter-1 function in bile acid import were detected in LCA-fed mice. These transporter levels are higher in FXR-null mice than wild-type mice after 1% LCA supplement. No obvious changes were detected in the Mrp2, Mrp3, and Mrp4 mRNAs. These results indicate hydroxysteroid sulfotransferase-mediated LCA sulfation as a major pathway for protection against LCA-induced liver damage. Furthermore, Northern blot analysis using FXR-null, pregnane X receptor-null, and FXR-pregnane X receptor double-null mice suggests a repressive role of these nuclear receptors on basal St2a expression.  相似文献   
95.
Listeria monocytogenes is a bacterial pathogen that can escape the phagosome and replicate in the cytosol of host cells during infection. We previously observed that a population (up to 35%) of L. monocytogenes strain 10403S colocalize with the macroautophagy marker LC3 at 1 h postinfection. This is thought to give rise to spacious Listeria-containing phagosomes (SLAPs), a membrane-bound compartment harboring slow-growing bacteria that is associated with persistent infection. Here, we examined the host and bacterial factors that mediate LC3 recruitment to bacteria at 1 h postinfection. At this early time point, LC3+ bacteria were present within single-membrane phagosomes that are LAMP1+. Protein ubiquitination is known to play a role in targeting cytosolic L. monocytogenes to macroautophagy. However, we found that neither protein ubiquitination nor the ubiquitin-binding adaptor SQSTM1/p62 are associated with LC3+ bacteria at 1 h postinfection. Reactive oxygen species (ROS) production by the CYBB/NOX2 NADPH oxidase was also required for LC3 recruitment to bacteria at 1 h postinfection and for subsequent SLAP formation. Diacylglycerol is an upstream activator of the CYBB/NOX2 NADPH oxidase, and its production by both bacterial and host phospholipases was required for LC3 recruitment to bacteria. Our data suggest that the LC3-associated phagocytosis (LAP) pathway, which is distinct from macroautophagy, targets L. monocytogenes during the early stage of infection within host macrophages and allows establishment of an intracellular niche (SLAPs) associated with persistent infection.  相似文献   
96.
The setpoint of viral RNA concentration (viral load [VL]) during chronic human immunodeficiency virus type 1 (HIV-1) infection reflects a virus-host equilibration closely related to CD8(+) cytotoxic T-lymphocyte (CTL) responses, which rely heavily on antigen presentation by the human major histocompatibility complex (MHC) (i.e., HLA) class I molecules. Differences in HIV-1 VL among 259 mostly clade C virus-infected individuals (137 females and 122 males) in the Zambia-UAB HIV Research Project (ZUHRP) were associated with several HLA class I alleles and haplotypes. In particular, general linear model analyses revealed lower log(10) VL among those with HLA allele B*57 (P = 0.002 [without correction]) previously implicated in favorable response and in those with HLA B*39 and A*30-Cw*03 (P = 0.002 to 0.016); the same analyses also demonstrated higher log(10) VL among individuals with A*02-Cw*16, A*23-B*14, and A*23-Cw*07 (P = 0.010 to 0.033). These HLA effects remained strong (P = 0.0002 to 0.075) after adjustment for age, gender, and duration of infection and persisted across three orders of VL categories (P = 0.001 to 0.084). In contrast, neither B*35 (n = 15) nor B*53 (n = 53) showed a clear disadvantage such as that reported elsewhere for these closely related alleles. Other HLA associations with unusually high (A*68, B*41, B*45, and Cw*16) or low (B*13, Cw*12, and Cw*18) VL were either unstable or reflected their tight linkage respecting disequilibria with other class I variants. The three consistently favorable HLA class I variants retained in multivariable models and in alternative analyses were present in 30.9% of subjects with the lowest (<10,000 copies per ml) and 3.1% of those with the highest (>100,000) VL. Clear differential distribution of HLA profiles according to level of viremia suggests important host genetic contribution to the pattern of immune control and escape during HIV-1 infection.  相似文献   
97.

Objective

This study aimed to elucidate the relationship between glucose levels and insulin resistance and sensitivity obtained from oral glucose tolerance tests and neurophysiological indices of attention among adults with overweight and obesity.

Methods

Forty adults with overweight or obesity (BMI ≥ 25 kg/m2) underwent dual‐energy x‐ray absorptiometry to assess visceral adipose tissue. Repeated venous blood samples were collected during an oral glucose tolerance test to measure insulin resistance (homeostatic model assessment of insulin resistance) and indices of insulin sensitivity (Matsuda index and Stumvoll metabolic clearance rate). Attention was assessed using event‐related brain potentials recorded during a visual oddball task. Amplitude and latency of the P3 wave form in a central‐parietal region of interest were used to index attentional resource allocation and information processing speed.

Results

Following adjustment for visceral adipose tissue, reduced values of Matsuda index and Stumvoll metabolic clearance rate (indicating poor insulin sensitivity) were correlated with longer peak latency, whereas insulin area under the curve was positively related to peak latency, indicating slower information processing. Individuals with decreased insulin sensitivity (Matsuda index < 4.3) had significantly longer P3 latencies compared with individuals with normal insulin sensitivity.

Conclusions

Higher fasting glucose, but not homeostatic model assessment of insulin resistance, and reduced indices of glucose sensivity are associated with decrements in attention characterized by slower reaction time and slower information processing speed among adults with overweight and obesity.
  相似文献   
98.
Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection.  相似文献   
99.
Secretory phospholipase 2 (sPLA2) acts as a mediator between proximal and distal events of the inflammatory cascade. Its role in SARS-CoV-2 infection is unknown, but could contribute to COVID-19 inflammasome activation and cellular damage. We present the first report of plasma sPLA2 levels in adults and children with COVID-19 compared with controls. Currently asymptomatic adults with a history of recent COVID-19 infection (≥4 weeks before) identified by SARS-CoV-2 IgG antibodies had sPLA2 levels similar to those who were seronegative (9 ± 6 vs.17 ± 28 ng/mL, P = 0.26). In contrast, children hospitalized with severe COVID-19 had significantly elevated sPLA2 compared with those with mild or asymptomatic SARS-CoV-2 infection (269 ± 137 vs. 2 ± 3 ng/mL, P = 0.01). Among children hospitalized with multisystem inflammatory syndrome in children (MIS-C), all had severe disease requiring pediatric intensive care unit (PICU) admission. sPLA2 levels were significantly higher in those with acute illness <10 days versus convalescent disease ≥10 days (540 ± 510 vs. 2 ± 1, P = 0.04). Thus, sPLA2 levels correlated with COVID-19 severity and acute MIS-C in children, implicating a role in inflammasome activation and disease pathogenesis. sPLA2 may be a useful biomarker to stratify risk and guide patient management for children with acute COVID-19 and MIS-C. Therapeutic compounds targeting sPLA2 and inflammasome activation warrant consideration.  相似文献   
100.
Tissue non-specific alkaline phosphatase is a membrane-bound glycoprotein enzyme which is characterized by its phosphohydrolytic, protein phosphatase, and phosphotransferase activities. This enzyme is distributed virtually in all mammalian tissues, particularly during embryonic development. Its expression is stagespecific and can be demonstrated in the developing embryo as early as the 2-cell stage. It has been suggested that tissue non-specific alkaline phosphatase might play a role in tissue formation. In the study reported here, a genetransfer approach was employed to investigate possible roles for this enzyme by inserting the cDNA for rat tissue non-specific alkaline phosphatase into CHO and LLC-PK1 cells. Permanently transfected cell-lines expressing varying levels of alkaline phosphatase were estblished. The data showed that functional enzyme was expressed in the transfected cells. Cell spreading and attachment were enhanced in transfected CHO cells expressing high levels of tissue non-specific alkaline phosphatase but not in the LLC-PK1 cells. Further, in CHO cells, proliferation was shown to be inversely proportional to the level of the tissue non-specific alkaline phosphatase expression. Homotypic cell association was demonstrated in both alkaline phosphatase-positive and alkaline phosphatase-negative cells in both CHO and LLC-PK1 celllines. Taken together, these findings suggest that in addition to a role in mineralization of bone, tissue nonspecific alkaline phosphatase might also play a role in other cell activities, including those related to differentiation, such as cell-cell or cell-substrate interaction and proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号