首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2336篇
  免费   176篇
  国内免费   4篇
  2023年   10篇
  2022年   51篇
  2021年   83篇
  2020年   31篇
  2019年   57篇
  2018年   48篇
  2017年   37篇
  2016年   72篇
  2015年   129篇
  2014年   106篇
  2013年   147篇
  2012年   166篇
  2011年   149篇
  2010年   89篇
  2009年   75篇
  2008年   116篇
  2007年   112篇
  2006年   109篇
  2005年   96篇
  2004年   91篇
  2003年   77篇
  2002年   85篇
  2001年   26篇
  2000年   24篇
  1999年   19篇
  1998年   33篇
  1997年   12篇
  1996年   17篇
  1995年   26篇
  1994年   12篇
  1993年   11篇
  1992年   13篇
  1991年   13篇
  1990年   20篇
  1989年   18篇
  1988年   14篇
  1987年   14篇
  1985年   16篇
  1984年   12篇
  1983年   19篇
  1982年   26篇
  1981年   26篇
  1980年   14篇
  1977年   12篇
  1976年   11篇
  1975年   10篇
  1974年   12篇
  1973年   14篇
  1970年   13篇
  1969年   12篇
排序方式: 共有2516条查询结果,搜索用时 31 毫秒
991.
Summary Gene dosage studies yielded results consistent with assignment of the locus for nucleoside phosphorylase to band 14q13. The red blood cells from a patient with the karyotype 47,XX,+der(14),t(8;14)(8qter8q24: :14q2114pter)pat had enzyme activity 50% higher than red cells from 47 normal controls, two trisomies involving chromosomes other than 14, and five balanced translocations involving chromosome 14. On the other hand, the red cells of a case with a karyotype 45,XX,-14,-22,+der(22),t(14;22)(14qter14q11 or 14q12::22p1122qter)mat and a case with a karyotype 47,XX, +der(14),t(14;16)(14pter14q11::16q2416qter)mat had normal activity.  相似文献   
992.
HIV infection causes immune activation that leads to oxidative damage. Proinflammatory cytokines may promote such damage and the regulatory cytokine IL-10 may protect against such damage. To examine the relation of these cytokines to oxidative damage, 67 cases of oxidative damage and 67 matched controls were selected from the reaching for excellence in adolescent health (REACH) study. Subjects were young (15-23 years), largely female (76%), HIV-positive (73%) and black (69%). Proinflammatory cytokines were not significantly associated with oxidative damage but plasma IL-10 had a significant, negative association with oxidative damage. This finding is consistent with a protective role for IL-10 in diminishing oxidative damage during immune activation.  相似文献   
993.
994.
Astrocytes comprise the major cell type in the central nervous system (CNS) and they are essential for support of neuronal functions by providing nutrients and regulating cell-to-cell communication. Astrocytes also are immune-like cells that become reactive in response to neuronal injury. Phospholipases A2 (PLA 2) are a family of ubiquitous enzymes that degrade membrane phospholipids and produce lipid mediators for regulating cellular functions. Three major classes of PLA 2 are expressed in astrocytes: group IV calcium-dependent cytosolic PLA 2 (cPLA2), group VI calcium-independent PLA 2 (iPLA2), and group II secretory PLA 2 (sPLA2). Upregulation of PLA 2 in reactive astrocytes has been shown to occur in a number of neurodegenerative diseases, including stroke and Alzheimer’s disease. This review focuses on describing the effects of oxidative stress, inflammation, and activation of G protein-coupled receptors on PLA 2 activation, arachidonic acid (AA) release, and production of prostanoids in astrocytes.  相似文献   
995.
Plant polyphenols are dietary components that exert a variety of biochemical and pharmacological effects. Recently, considerable interest has been focused on polyphenols because of their antioxidant, anti-inflammatory, and antiproliferative activities. Oxidative stress is thought to be a key event in the pathogenesis of cerebral ischemia. Overproduction of reactive oxygen species during ischemia/reperfusion could cause an imbalance between oxidative and antioxidative processes. Reactive oxygen species can damage lipids, proteins, and nucleic acids, thereby inducing apoptosis or necrosis. There is increasing evidence supporting the hypothesis that plant polyphenols can provide protection against neurodegenerative changes associated with cerebral ischemia. This article reviews the neuroprotective effects of plant extracts and their constituents that have been used in animal models of cerebral ischemia. The use of polyphenols as therapeutic agents in stroke has been suggested.  相似文献   
996.
Mechanisms for inhibition of P2 receptors signaling in neural cells   总被引:4,自引:0,他引:4  
Trophic factors are required to ensure neuronal viability and regeneration after neural injury. Although abundant information is available on the factors that cause the activation of astrocytes, little is known about the molecular mechanisms underlying the regulation of this process. Nucleotides released into the extracellular space from injured or dying neural cells can activate astrocytes via P2 nucleotide receptors. After a brief historical review and update of novel P2 receptor antagonists, this article focuses on recent advancements toward understanding molecular mechanisms that regulate G protein-coupled P2Y receptor signaling. Among P2Y receptor subtypes, the heptahelical P2Y2 nucleotide receptor interacts with vitronectin receptors via an RGD sequence in the first extracellular loop, and this interaction is required for effective signal transduction to activate mitogen-activated protein kinases ERK1/2, to mobilize intracellular calcium stores via activation of phospholipase C, protein kinase C isoforms, and to activate focal adhesion kinase and other signaling events. Ligation of vitronectin receptors with specific antibodies caused an inhibition of P2Y2 receptor-induced ERK1/2 and p38 phosphorylation and P2Y2 receptor-induced cytoskeleton rearrangement and DNA synthesis. Structure-function studies have identified agonist-induced phosphorylation of the C-terminus of the P2Y2 receptor, an important mechanism for receptor desensitization. Understanding selective mechanisms for regulating P2Y2 receptor signaling could provide novel targets for therapeutic strategies in the management of brain injury, synaptogenesis, and neurological disorders.  相似文献   
997.
Molecular determinants of P2Y2 nucleotide receptor function   总被引:5,自引:0,他引:5  
In the mammalian nervous system, P2 nucleotide receptors mediate neurotransmission, release of proinflammatory cytokines, and reactive astrogliosis. Extracellular nucleotides activate multiple P2 receptors in neurons and glial cells, including G protein-coupled P2Y receptors and P2X receptors, which are ligand-gated ion channels. In glial cells, the P2Y2 receptor subtype, distinguished by its ability to be equipotently activated by ATP and UTP, is coupled to pro-inflammatory signaling pathways. In situ hybridization studies with rodent brain slices indicate that P2Y2 receptors are expressed primarily in the hippocampus and cerebellum. Astrocytes express several P2 receptor subtypes, including P2Y2 receptors whose activation stimulates cell proliferation and migration. P2Y2 receptors, via an RGD (Arg-Gly-Asp) motif in their first extracellular loop, bind to alphavbeta3/beta5 integrins, whereupon P2Y2 receptor activation stimulates integrin signaling pathways that regulate cytoskeletal reorganization and cell motility. The C-terminus of the P2Y2 receptor contains two Src-homology-3 (SH3)-binding domains that upon receptor activation, promote association with Src and transactivation of growth factor receptors. Together, our results indicate that P2Y2 receptors complex with both integrins and growth factor receptors to activate multiple signaling pathways. Thus, P2Y2 receptors present novel targets to control reactive astrogliosis in neurodegenerative diseases.  相似文献   
998.
Zavala A  Naya H  Romero H  Sabbia V  Piovani R  Musto H 《Gene》2005,357(2):137-143
GC level is a key feature in prokaryotic genomes. Widely employed in evolutionary studies, new insights appear however limited because of the relatively low number of characterized genomes. Since public databases mainly comprise several hundreds of prokaryotes with a low number of sequences per genome, a reliable prediction method based on available sequences may be useful for studies that need a trustworthy estimation of whole genomic GC. As the analysis of completely sequenced genomes shows a great variability in distributional shapes, it is of interest to compare different estimators. Our analysis shows that the mean of GC values of a random sample of genes is a reasonable estimator, based on simplicity of the calculation and overall performance. However, usually sequences come from a process that cannot be considered as random sampling. When we analyzed two introduced sources of bias (gene length and protein functional categories) we were able to detect an additional bias in the estimation for some cases, although the precision was not affected. We conclude that the mean genic GC level of a sample of 10 genes is a reliable estimator of genomic GC content, showing comparable accuracy with many widely employed experimental methods.  相似文献   
999.
Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injury and cell death in many neurodegenerative diseases. Recent studies have indicated the ability of interferon-gamma (IFNgamma) and lipopolysaccharides (LPS) to independently induce type II nitric oxide synthase (iNOS) expression and NO production in BV-2 microglial cells. However, a detailed comparison between the signaling pathways activating iNOS by these two agents has not been accomplished. Analysis of PKC isoforms revealed mainly the presence of PKCdelta, iota and lambda in BV-2 cells. Although both IFNgamma and LPS could specifically enhance the tyrosine phosphorylation of PKCdelta, treatment with IFNgamma induced a steady increase of phospho-PKCdelta for up to 1h, whereas treatment with LPS elevated phospho-PKCdelta levels only transiently, with peak activity at 5 min. Rottlerin, a specific inhibitor for PKCdelta, dose-dependently inhibited IFNgamma- and LPS-induced NO production. Despite the common involvement of PKCdelta, IFNgamma- but not LPS-induced NO production involved extracellular signal-regulated kinases (ERK1/2) cascade and IFNgamma-induced phosphorylation of ERK1/2 was mediated through PKC. On the other hand, LPS- but not IFNgamma-induced NO production was through stimulation of NF-kappaB activation and nuclear translocation to interact with DNA. These results demonstrated distinct signaling pathways for induction of iNOS by IFNgamma and LPS in BV-2 microglial cells.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号