首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2021年   1篇
  2015年   2篇
  2013年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有12条查询结果,搜索用时 187 毫秒
11.
Recent studies suggest that the aryl hydrocarbon receptor (AhR) modulates susceptibilities to some pro-apoptotic agents. AhR-containing murine hepatoma 1c1c7 cultures underwent apoptosis following exposure to tumor necrosis factor-alpha (TNFalpha) + cycloheximide (CHX). In contrast, Tao cells, an AhR-deficient variant of the 1c1c7 line, were refractory to this treatment. AhR sense/antisense transfection studies demonstrated that AhR contents influenced susceptibility to the pro-apoptotic effects of TNFalpha + CHX. 1c1c7 cells and all variants expressed comparable amounts of TNF receptor-1 and TRADD. However, no cell line expressed FADD, and consequently pro-caspase-8 was not activated. AhR content did not influence JNK and NF-kappaB activation. However, Bid and pro-caspase-9, -3, and -12 processing occurred only in AhR-containing cells. Analyses of cathepsin B and D activities in digitonin-permeabilized cultures and the monitoring of cathepsin B/D co-localization with Lamp-1 indicated that TNFalpha + CHX disrupted late endosomes/lysosomes in only AhR-containing cells. Stabilization of acidic organelles with 3-O-methylsphingomyelin inhibited TNFalpha + CHX-induced apoptosis. The cathepsin D inhibitor pepstatin A suppressed in vitro cleavage of Bid by 1c1c7 lysosomal extracts. It also delayed the induction of apoptosis and partially prevented Bid cleavage and the activation of pro-caspases-3/7 in cultures treated with TNFalpha + CHX. Similar suppressive effects occurred in cultures transfected with murine Bid antisense oligonucleotides. These studies showed that in cells where pro-caspase-8 is not activated, TNFalpha + CHX can initiate apoptosis through lysosomal disruption. Released proteases such as cathepsin D trigger the apoptotic program by activating Bid. Furthermore, in the absence of exogenous ligand, the AhR modulates lysosomal disruption/permeability.  相似文献   
12.
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号