首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   40篇
  2021年   2篇
  2020年   3篇
  2019年   9篇
  2018年   4篇
  2017年   6篇
  2016年   15篇
  2015年   3篇
  2014年   8篇
  2013年   3篇
  2012年   10篇
  2011年   2篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   6篇
  2006年   9篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1993年   3篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1988年   6篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1983年   2篇
  1982年   4篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1972年   8篇
  1971年   1篇
  1970年   4篇
  1969年   2篇
  1968年   4篇
  1967年   3篇
  1966年   2篇
  1964年   1篇
  1963年   1篇
  1961年   2篇
  1960年   2篇
排序方式: 共有217条查询结果,搜索用时 140 毫秒
11.
Five vinyl-substituted fluororetinal analogues (8-F, 10-F, 12-F, 14-F, and 13,14-F2) were found to give bacteriorhodopsin analogues with properties similar to those of the parent system. Of these, only 14-fluororetinal was found to give an extra red-shifted BR analogue (lambda max less than or equal to 680 nm) in equilibrium with the normal 587-nm pigment. The 680-nm pigment was enriched upon irradiation. It rearranged to the 587-nm pigment at room temperature (delta E [symbol: see text] = 20.8 kcal/mol). Chromophore extraction experiments revealed the all-trans geometry for the 680-nm pigment. 14-Chlororetinal gave a similarly red-shifted pigment while 14-methylretinal did not. A scheme for dark adaptation of the 14-halogenated bacteriorhodopsins has been proposed in which the new red-shifted pigment was assigned the all-trans, 15-syn geometry.  相似文献   
12.
Quantum efficiency of the photochemical cycle of bacteriorhodopsin   总被引:4,自引:3,他引:1       下载免费PDF全文
Values in the literature for the quantum efficiency of the photochemical cycle of bacteriorhodopsin (bR) range from 0.25 to 0.79 and the sum of the quantum yields of the forward and back photoreactions [Formula: see text] has been proposed to be 1. In the present work, low intensity laser flashes (532 nm) and kinetic spectroscopy were used to determine the quantum efficiency of bR photoconversion, [UNK]bR, by measuring transient bleaching of bR at 610 nm in the millisecond time scale. Bovine rhodopsin (R) in 2% ammonyx LO was used as a photon counter. We find that the ratio of the quantum yields of bacteriorhodopsin photoconversion and bleaching of rhodopsin, [UNK]bR/[UNK]R, is 0.96 ± 0.04. Based on the quantum yield of the photobleaching of rhodopsin, 0.67, the quantum efficiency of bR photoconversion was determined to be 0.64 ± 0.04. The quantum yield of M formation was found to be 0.65 ± 0.06. From the transient bleaching of bR at 610 nm with a saturating laser flash (28 mJ/cm2) the maximum amount of bR cycling was estimated to be 47 ± 3%. From this value and the spectrum of K published in the literature, the ratio of the efficiencies of the forward and back light reactions, [UNK]1/[UNK]2, was estimated to be 0.67 ± 0.06 and so [UNK]2 ≈ 1 (0.94 ± 0.06). The sum of [UNK]1 + [UNK]2 ≈ 1.6. It was found that repeated high-intensity laser flashes (>20 mJ/cm2) irreversibly transformed bR into two stable photoproducts. One has its absorption maximum at 605 nm and the other has a well-resolved vibronic spectrum with maxima at 342, 359 (main peak), and 379 nm. The quantum yield of the formation of the photoproducts is ≈ 10-4.  相似文献   
13.
Measurements are reported on μs delayed light emission, following a single 10 ns excitation flash, in Alaska pea thylakoids treated with hydroxylamine (NH2OH) or with silicomolybdate.
  1. In thylakoids treated with 2 mM NH2OH in the light, or in the dark, the quantum yield of delayed light emission is considerably enhanced. A 10 μs lifetime component of delayed light emission is not significantly changed, whereas a 50–70 μs lifetime component is increased. MnCl2 and diphenylcarbazide are unable to reverse the above effects of NH2OH treatment. Thus Mn2+ and diphenylcarbazide must not donate electrons directly to reaction center II but on the oxygen-evolution side of the NH2OH block.
  2. When the closed form of photosystem II reaction centers (P680Q-), where P680 is the reaction center chlorophyll and Q is a ‘stable’ electron acceptor, is generated by preillumination of NH2OH-treated thylakoids with diuron present, the μs delayed light emission is inhibited, but a low level residual delayed light emission remains. Possible origins of this emission are discussed. It is believed that the best explanation for residual DLE is the existence of another acceptor besides Q that partakes in charge separation and rapid dissipative recombination when the reaction center is in the P680Q- state.
  3. The quantum yield of delayed light emission from ‘closed’ reaction centers (P680 +Q-) that have all charge stabilization reactions (i.e., flow of electrons to P680 + and out of Q-) blocked by NH2OH treatment and addition of diuron is 1.1×10-3 for components measured in a range from 6 to 400 μs and extrapolated to zero time.
  4. The addition of silicomolybdate, which accepts electron from Q-, causes delayed light emission in the μs range to be greatly inhibited.
  相似文献   
14.
T. Wydrzynski  N. Zumbulyadis  P.G. Schmidt  Govindjee   《BBA》1975,408(3):349-354
First measurements of proton relaxation on chloroplast membranes are presented here. Experiments show that the water proton spin-lattice relaxation rate in chloroplast thylakoid membrane suspensions can be used to monitor membrane-bound manganese. The relaxation effect is reduced to 0.4 of its original value upon manganese extraction by washing with either alkaline Tris buffer or NH2OH/EDTA solution. Large increases in the proton relaxation rate are measured in the presence of reductants such as tetraphenylboron and NH2OH; oxidants such as potassium ferricyanide or 2,6-dichlorophenolindo-phenol lead to a decrease in this rate. These results suggest that maganese exists as a mixture of oxidation states in dark-adapted chloroplasts.  相似文献   
15.
In this brief report, we provide a pictorial essay on an international conference “Photosynthesis Research for Sustainability-2013 in honor of Jalal A. Aliyev” that was held in Baku, Azerbaijan, during June 5–9, 2013 (http://photosynthesis2013.cellreg.org/). We begin this report with a brief note on Jalal Aliyev, the honored scientist, and on John Walker (1997 Nobel laureate in Chemistry) who was a distinguished guest and lecturer at the Conference. We briefly describe the Conference, and the program. In addition to the excellent scientific program, a special feature of the Conference was the presentation of awards to nine outstanding young investigators; they are recognized in this report. We have also included several photographs to show the pleasant ambience at this conference. (See http://photosynthesis2013.cellreg.org/Photo-Gallery.php; https://www.dropbox.com/sh/qcr124dajwffwh6/TlcHBvFu4H?m; and https://www.copy.com/s/UDlxb9fgFXG9/Baku for more photographs taken by the authors as well as by others.) We invite the readers to the next conferences on “Photosynthesis Research for Sustainability—2014: in honor of Vladimir A. Shuvalov” to be held during June 2–7, 2014, in Pushchino, Russia. Detailed information for this will be posted at the Website: http://photosynthesis2014.cellreg.org/, and for the subsequent conference on “Photosynthesis Research for Sustainability—2015” to be held in May or June 2015, in Baku, Azerbaijan, at http://photosynthesis2015.cellreg.org/.  相似文献   
16.
17.
The maximum quantum yield of photosystem II (as reflected by variable to maximum chlorophyll a fluorescence, Fv/Fm) is regarded as one of the most important photosynthetic parameters. The genetic basis underlying natural variation in Fv/Fm, which shows low level of variations in plants under non‐stress conditions, is not easy to be exploited using the conventional gene cloning approaches. Thus, in order to answer this question, we have followed another strategy: we used genome‐wide association study (GWAS) and transgenic analysis in a rice mini‐core collection. We report here that four single‐nucleotide polymorphisms, located in the promoter region of β‐glucosidase 5 (BGlu‐5), are associated with observed variation in Fv/Fm. Indeed, our transgenic analysis showed a good correlation between BGlu‐5 and Fv/Fm. Thus, our work demonstrates the feasibility of using GWAS to study natural variation in Fv/Fm, suggesting that cis‐element polymorphism, affecting the BGlu‐5 expression level, may, indirectly, contribute to Fv/Fm variation in rice through the gibberellin signaling pathway. Further research is needed to understand the mechanism of our novel observation.  相似文献   
18.
Hamdani  Saber  Khan  Naveed  Perveen  Shahnaz  Qu  Mingnan  Jiang  Jianjun  Govindjee  Zhu  Xin-Guang 《Photosynthesis research》2019,139(1-3):107-121
Photosynthesis Research - Non-photochemical quenching (NPQ) of the excited state of chlorophyll a is a major photoprotective mechanism plants utilize to survive under high light. Here, we report...  相似文献   
19.
20.
Tocopherols (vitamin E) are lipid soluble antioxidants synthesized by plants and some cyanobacteria. We have earlier reported that overexpression of the γ-tocopherol methyl transferase (γ-TMT) gene from Arabidopsis thaliana in transgenic Brassica juncea plants resulted in an over six-fold increase in the level of α-tocopherol, the most active form of all the tocopherols. Tocopherol levels have been shown to increase in response to a variety of abiotic stresses. In the present study on Brassica juncea, we found that salt, heavy metal and osmotic stress induced an increase in the total tocopherol levels. Measurements of seed germination, shoot growth and leaf disc senescence showed that transgenic Brassica juncea plants overexpressing the γ-TMT gene had enhanced tolerance to the induced stresses. Analysis of the chlorophyll a fluorescence rise kinetics, from the initial “O” level to the “P” (the peak) level, showed that there were differential effects of the applied stresses on different sites of the photosynthetic machinery; further, these effects were alleviated in the transgenic (line 16.1) Brassica juncea plants. We show that α-tocopherol plays an important role in the alleviation of stress induced by salt, heavy metal and osmoticum in Brassica juncea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号