首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   4篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   5篇
  2016年   3篇
  2015年   15篇
  2014年   13篇
  2013年   16篇
  2012年   19篇
  2011年   19篇
  2010年   13篇
  2009年   10篇
  2008年   14篇
  2007年   10篇
  2006年   12篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1982年   3篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
91.
The age‐dependent decline in the self‐renewal capacity of stem cells plays a critical role in aging, but the precise mechanisms underlying this decline are not well understood. By limiting proliferative capacity, senescence is thought to play an important role in age‐dependent decline of stem cell self‐renewal, although direct evidence supporting this hypothesis is largely lacking. We have previously identified the E3 ubiquitin ligase Smurf2 as a critical regulator of senescence. In this study, we found that mice deficient in Smurf2 had an expanded hematopoietic stem cell (HSC) compartment in bone marrow under normal homeostatic conditions, and this expansion was associated with enhanced proliferation and reduced quiescence of HSCs. Surprisingly, increased cycling and reduced quiescence of HSCs in Smurf2‐deficient mice did not lead to premature exhaustion of stem cells. Instead, HSCs in aged Smurf2‐deficient mice had a significantly better repopulating capacity than aged wild‐type HSCs, suggesting that decline in HSC function with age is Smurf2 dependent. Furthermore, Smurf2‐deficient HSCs exhibited elevated long‐term self‐renewal capacity and diminished exhaustion in serial transplantation. As we found that the expression of Smurf2 was increased with age and in response to regenerative stress during serial transplantation, our findings suggest that Smurf2 plays an important role in regulating HSC self‐renewal and aging.  相似文献   
92.
Linguistic and genetic studies on Roma populations inhabited in Europe have unequivocally traced these populations to the Indian subcontinent. However, the exact parental population group and time of the out-of-India dispersal have remained disputed. In the absence of archaeological records and with only scanty historical documentation of the Roma, comparative linguistic studies were the first to identify their Indian origin. Recently, molecular studies on the basis of disease-causing mutations and haploid DNA markers (i.e. mtDNA and Y-chromosome) supported the linguistic view. The presence of Indian-specific Y-chromosome haplogroup H1a1a-M82 and mtDNA haplogroups M5a1, M18 and M35b among Roma has corroborated that their South Asian origins and later admixture with Near Eastern and European populations. However, previous studies have left unanswered questions about the exact parental population groups in South Asia. Here we present a detailed phylogeographical study of Y-chromosomal haplogroup H1a1a-M82 in a data set of more than 10,000 global samples to discern a more precise ancestral source of European Romani populations. The phylogeographical patterns and diversity estimates indicate an early origin of this haplogroup in the Indian subcontinent and its further expansion to other regions. Tellingly, the short tandem repeat (STR) based network of H1a1a-M82 lineages displayed the closest connection of Romani haplotypes with the traditional scheduled caste and scheduled tribe population groups of northwestern India.  相似文献   
93.
94.
95.
Smooth muscle is unique in its ability to maintain force at low MgATP consumption. This property, called the latch state, is more prominent in tonic than phasic smooth muscle. Studies performed at the muscle strip level have suggested that myosin from tonic muscle has a greater affinity for MgADP and therefore remains attached to actin longer than myosin from phasic muscle, allowing for cross-bridge dephosphorylation and latch-bridge formation. An alternative hypothesis is that after dephosphorylation, myosin reattaches to actin and maintains force. We investigated these fundamental properties of smooth muscle at the molecular level. We used an in vitro motility assay to measure actin filament velocity (nu(max)) when propelled by myosin purified from phasic or tonic muscle at increasing [MgADP]. Myosin was 25% thiophosphorylated and 75% unphosphorylated to approximate in vivo conditions. The slope of nu(max) versus [MgADP] was significantly greater for tonic (-0.51 +/- 0.04) than phasic muscle myosin (-0.15 +/- 0.04), demonstrating the greater MgADP affinity of myosin from tonic muscle. We then used a laser trap assay to measure the unbinding force from actin of populations of unphosphorylated tonic and phasic muscle myosin. Both myosin types attached to actin, and their unbinding force (0.092 +/- 0.022 pN for phasic muscle and 0.084 +/- 0.017 pN for tonic muscle) was not statistically different. We conclude that the greater affinity for MgADP of tonic muscle myosin and the reattachment of dephosphorylated myosin to actin may both contribute to the latch state.  相似文献   
96.
The aim of the present study was to evaluate the protective effect of Gymnema montanum on red blood cell (RBC) membrane in diabetic rats during lipid peroxidation. Ethanol extract of G. montanum leaves (GLEt) was administered orally to alloxan-induced diabetic rats for 3 weeks, and the effects on blood glucose, insulin, lipid peroxidation markers, thiobarbituric acid reactive substances, hydroperoxides in plasma and antioxidant enzymes including superoxide dismutase, catalase and glutathione peroxidase activities in erythrocytes were studied. Administration of GLEt to diabetic animals at doses of 50, 100, and 200 mg/kg body weight lowered elevated blood glucose levels by 24, 35, and 66%, respectively, relative to untreated diabetic rats. In comparison, treatment with the known antidiabetic drug, glibenclamide (600 μg/kg body weight) decreased blood glucose concentrations by 51%. Plasma insulin concentrations were increased in the diabetic rat by 73% with GLEt (200 mg/kg body weight) and 45% with glibenclamide (600 μg/kg body weight). Although a significant decrease in the lipid peroxidation markers was observed in plasma on treatment with GLEt and glibenclamide, the RBC antioxidant levels were increased significantly in diabetic rats. Furthermore, erythrocytes from the GLEt-treated animals were found to be more resistant to H2O2-induced peroxidation than that of untreated diabetic animals. The chemical characterization of the polyphenolics of the extract showed the presence of gallic acid (5.29% w/w), resveratrol (2.2% w/w), and quercetin (16.6% w/w). The results of this study suggest that G. montanum may be useful for the control, management, and prevention of oxidative stress associated with diabetes.  相似文献   
97.
Understanding the growth of bacterial pathogens in a micronutrient restricted host environment can identify potential virulence proteins that help overcome this nutritional barrier to productive infection. In this study, we investigated the pneumococcal protein expression response to iron limitation using an in vitro model. We identified S. pneumoniae TIGR4 proteins by 2-D LC ESI MS/MS and determined significant changes in protein expression in response to iron restriction using computer-intensive random resampling methods. Differential protein expression was studied in the context of a S. pneumoniae TIGR4 protein interaction network using Pathway Studio. Our analysis showed that pneumococcal iron restriction response was marked by increased expression of known virulence factors like PsaA. It involved changes in the expression of stress response, and phase variation and biofilm formation proteins. The net effect of changes in all these biological processes could increase the virulence of S. pneumoniae TIGR4 during in vivo infection.  相似文献   
98.
Phenotypic identification of groupers of the genus Epinephelus is based on color patterns and a suite of morphologic characters. However, these characters often show intraspecific variations and differences between juveniles and adults of the same species. The present work is an attempt to study and ratify the status of Epinephelus spp. using random amplified polymorphic DNA (RAPD) analysis based on samples drawn from southeast and southwest coasts of India. The RAPD fingerprints generated in Epinephelus diacanthus, E. areolatus, E. chlorostigma, E. bleekeri, E. coioides, E. tauvina, and E. malabaricus with 4 primers (OPA 01, OPA 07, OPF 08, and OPF 10) were consistent, reproducible, and yielded species-specific diagnostic markers in all the species. A total of 59 RAPD loci in the size range of 70 to 4500 bp were produced from all 4 arbitrary primers. An unweighted pair-group method with arithmetic mean (UPGMA) dendogram was constructed based on genetic distance values to show the genetic relationships among the 7 species. All the individuals of each species formed monophyletic species clusters. The mean intraspecies genetic distance value (0.305) was significantly lower than the interspecies value (0.365). Epinephelus malabaricus was most distantly related to E. diacanthus and E. bleekeri. The genetic relationship was very close among E. coioides, E. tauvina, and E. malabaricus and also between E. chlorostigma and E. bleekeri. Within-species genetic polymorphism was highest in E. chlorostigma (49.15%) and lowest in E. tauvina (25.42%).  相似文献   
99.
Human pregnancy is a delicate and complex process where multiorgan interactions between two independent systems, the mother, and her fetus, maintain pregnancy. Intercellular interactions that can define homeostasis at the various cellular level between the two systems allow uninterrupted fetal growth and development until delivery. Interactions are needed for tissue remodeling during pregnancy at both fetal and maternal tissue layers. One of the mechanisms that help tissue remodeling is via cellular transitions where epithelial cells undergo a cyclic transition from epithelial to mesenchymal (EMT) and back from mesenchymal to epithelial (MET). Two major pregnancy-associated tissue systems that use EMT, and MET are the fetal membrane (amniochorion) amnion epithelial layer and cervical epithelial cells and will be reviewed here. EMT is often associated with localized inflammation, and it is a well-balanced process to facilitate tissue remodeling. Cyclic transition processes are important because a terminal state or the static state of EMT can cause accumulation of proinflammatory mesenchymal cells in the matrix regions of these tissues and increase localized inflammation that can cause tissue damage. Interactions that determine homeostasis are often controlled by both endocrine and paracrine mediators. Pregnancy maintenance hormone progesterone and its receptors are critical for maintaining the balance between EMT and MET. Increased intrauterine oxidative stress at term can force a static (terminal) EMT and increase inflammation that are physiologic processes that destabilize homeostasis that maintain pregnancy to promote labor and delivery of the fetus. However, conditions that can produce an untimely increase in EMT and inflammation can be pathologic. These tissue damages are often associated with adverse pregnancy complications such as preterm prelabor rupture of the membranes (pPROM) and spontaneous preterm birth (PTB). Therefore, an understanding of the biomolecular processes that maintain cyclic EMT-MET is critical to reducing the risk of pPROM and PTB. Extracellular vesicles (exosomes of 40-160 nm) that can carry various cargo are involved in cellular transitions as paracrine mediators. Exosomes can carry a variety of biomolecules as cargo. Studies specifically using exosomes from cells undergone EMT can carry a pro-inflammatory cargo and in a paracrine fashion can modify the neighboring tissue environment to cause enhancement of uterine inflammation.  相似文献   
100.
Summary Recombinant DNA plasmids containing inserts from the glnA region of Escherichia coli were used to study the expression of gln, hut, and nif operons in a regulation defective mutant (GlnHutNif) of Klebsiella pneumoniae, KP5060. Genes adjacent to the C-terminal end of glnA on the E. coli chromosome were able to derepress hut and nif operons in K. pneumoniae in the absence of glnA product. However, complete derepression of nif operons required inclusion of the segment adjacent to the N-terminal end of the glnA region of the E. coli chromosome along with the C-terminal end segment. In the absence of functional glnA, such a fully derepressed strain expressed nif and hut constitutively indicating a role for the catalytic activity of glutamine synthetase in repression of the genes under nitrogen control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号