首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   8篇
  186篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   8篇
  2015年   5篇
  2014年   11篇
  2013年   15篇
  2012年   18篇
  2011年   12篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   9篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1982年   3篇
  1981年   4篇
  1980年   8篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有186条查询结果,搜索用时 10 毫秒
91.
An endophytic Serratia marcescens strain SRM (MTCC 8708) isolated from the flowers of summer squash was found to be entomopathogenic against the larvae of Helicoverpa armigera. Natural epizootic of this bacterial strain on the larvae collected from summer squash flowers ranged from 19.9 to 72.3%. Under laboratory conditions, a dose of 6 × 1010 c.f.u./ml diet induced 66.3% mortality of first instar H. armigera larvae. Similarly all other growth and development parameters of the insect were severely retarded in a dose-dependent manner. The bacterium invaded the entire alimentary canal and haemolymph with successful replacement of all other gut-associated microflora. There was a great reduction in midgut proteinase activity due to inhibition of five major proteinase isozymes by S. marcescens infection. Further, a synergistic interaction between chitinases isolated from this strain and Bacillus thuringiensis Cry1Ac toxin was observed. The present findings suggest that this plant-associated S. marcescens strain SRM could be suitably exploited for the management of H. armigera.  相似文献   
92.
The rat liver nuclear glucocorticoid receptor has a molecular weight of 90 000. Using antibody bound to the stationary matrix, the cytosol and nuclear glucocorticoid receptors from rat liver were purified. The translocation of glucocorticoid receptor from rat liver cytosol into the nucleus was studied using immunoaffinity chromatography. Immediately after the intraperitoneal injection of rats with the hormone, the receptor translocation started and was complete within 10 min. The 90 000 dalton nuclear receptor component is identical to the 90 000 dalton cytosol component. They have identical molecular weights in the same gel electrophoresis system and produce identical peptide fragments after digestion with Staphyolococcal aureus V8 protease. The receptor component enriched by immunoaffinity chromatography from cytosol of adrenalectomised rats contained mainly a 45 000 dalton component.  相似文献   
93.
Cadmium and zinc appear in the combined forms and they are co-pollutants. Cd is the most hazardous metal ion for human beings and causes renal dysfunction, liver and lungs damage, bone degeneration and blood damage. Though Zn is an essential nutrient, excess of Zn is toxic. Biological process was more important because conventional methods fail to remediate these pollutants due to high costs and less affordability. The screening and understanding of the functioning of microorganism plays an important role in removal and recovery of metals from heavy-metal-polluted water and soil. In our study, the strain Pseudomonas aeruginosa BC15 was isolated from oil-mill-treated waste water and it showed to be highly resistant to 6 mM Cd and 20 mM Zn in the solid and liquid media. The growth studies of BC15 strain in the medium without induction exhibited high tolerable capacity when compared to other microbes. Pretreatment of P. aeruginosa BC15 with sub-lethal concentrations of Cd induced adaptive resistance to lethal doses of Cd. Cadmium-induced cells also showed cross resistance to lethal concentration of zinc. The organism had high resistance against Cd and Zn. This has been clearly proven through biosorption studies: Cd was absorbed up to 62% and Zn about 60% in single solution, whereas in binary solution Cd was biosorbed up to 82% and Zn 85%. In conclusion, this study reveals the significance of using the strain P. aeruginosa BC15 in the bioremediation of Cd and Zn from industrial waste water and contaminated soil.  相似文献   
94.
Simultaneous recordings of spike trains from multiple single neurons are becoming commonplace. Understanding the interaction patterns among these spike trains remains a key research area. A question of interest is the evaluation of information flow between neurons through the analysis of whether one spike train exerts causal influence on another. For continuous-valued time series data, Granger causality has proven an effective method for this purpose. However, the basis for Granger causality estimation is autoregressive data modeling, which is not directly applicable to spike trains. Various filtering options distort the properties of spike trains as point processes. Here we propose a new nonparametric approach to estimate Granger causality directly from the Fourier transforms of spike train data. We validate the method on synthetic spike trains generated by model networks of neurons with known connectivity patterns and then apply it to neurons simultaneously recorded from the thalamus and the primary somatosensory cortex of a squirrel monkey undergoing tactile stimulation.  相似文献   
95.
In silico virtual screening using the ligand-based ROCS approach and the commercially purchasable compound collection from the ZINC database resulted in the identification of distinctly different and novel acetamide core frameworks with series representatives 1a and 2a exhibiting nanomolar affinity in the kinase domain only hTrkA HTRF biochemical assay. Additional experimental validation using the Caliper technology with either the active or inactive kinase conditions demonstrated the leads, 1a and 2a, to preferentially bind the kinase inactive state. X-ray structural analysis of the kinase domain of hTrkA…1a/2a complexes confirmed the kinase, bind the inhibitor leads in the inactive state and to exhibit a type 2 binding mode with the DFG-out and αC-helix out conformation. The leads also demonstrated sub-micromolar activity in the full length hTrkA cell-based assay and selectivity against the closely related hTrkB isoform. However, the poor microsomal stability and permeability of the leads is suggestive of a multiparametric lead optimization effort requirement for further progression.  相似文献   
96.

Background

Acinetobacter baumannii is becoming an increasing menace in health care settings especially in the intensive care units due to its ability to withstand adverse environmental conditions and exhibit innate resistance to different classes of antibiotics. Here we describe the biological contributions of abeD, a novel membrane transporter in bacterial stress response and antimicrobial resistance in A. baumannii.

Results

The abeD mutant displayed ~ 3.37 fold decreased survival and >5-fold reduced growth in hostile osmotic (0.25 M; NaCl) and oxidative (2.631 μM–6.574 μM; H2O2) stress conditions respectively. The abeD inactivated cells displayed increased susceptibility to ceftriaxone, gentamicin, rifampicin and tobramycin (~ 4.0 fold). The mutant displayed increased sensitivity to the hospital-based disinfectant benzalkonium chloride (~3.18-fold). In Caenorhabditis elegans model, the abeD mutant exhibited (P<0.01) lower virulence capability. Binding of SoxR on the regulatory fragments of abeD provide strong evidence for the involvement of SoxR system in regulating the expression of abeD in A. baumannii.

Conclusion

This study demonstrates the contributions of membrane transporter AbeD in bacterial physiology, stress response and antimicrobial resistance in A. baumannii for the first time.  相似文献   
97.
Multiple mechanisms that maintain Ca(2+) homeostasis and provide for Ca(2+) signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca(2+) clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca(2+) homeostatic molecules on cytosolic Ca(2+) ([Ca(2+)](i)) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca(2+)](i) dynamics. When bathing the cells in a Na(+)-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca(2+)-ATPase (PMCA), La(3+), all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca(2+)](i) transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca(2+) transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca(2+) homeostatic pathways, the Na(+)/Ca(2+) exchanger, the endoplasmic reticulum Ca(2+) pump, the plasmalemmal Ca(2+) pump and mitochondria, are complementary in actively clearing Ca(2+) from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca(2+)](i) dynamics; (iii) there is (are) Ca(2+) clearance mechanism(s) distinct from the four outlined above; and (iv) Ca(2+) homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.  相似文献   
98.
Every cell or neuronal type utilizes its own specific organization of its Ca(2+) homeostasis depending on its specific function and its physiological needs. The magnocellular neurones, with their somata situated in the supraoptic and paraventricular nuclei of the hypothalamus and their nerve terminals populating the posterior hypophysis (neural lobe) are a typical and classical example of a neuroendocrine system, and an important experimental model for attempting to understand the characteristics of the neuronal organization of Ca(2+) homeostasis. The magnocellular neurones synthesize, in a cell specific manner, two neurohormones: arginine-vasopressin (AVP) and oxytocin (OT), which can be released, in a strict Ca(2+)-dependent manner, both at the axonal terminals, in the neural lobe, and at the somatodendritic level. The two types of neurones show also distinct type of bioelectrical activity, associated with specific secretory patterns. In these neurones, the Ca(2+) homeostatic pathways such as the Na(+)/Ca(2+) exchanger (NCX), the endoplasmic reticulum (ER) Ca(2+) pump, the plasmalemmal Ca(2+) pump (PMCA) and the mitochondria are acting in a complementary fashion in clearing Ca(2+) loads that follow neuronal stimulation. The somatodendritic AVP and OT release closely correlates with intracellular Ca(2+) dynamics. More importantly, the ER Ca(2+) stores play a major role in Ca(2+) homeostatic mechanism in identified OT neurones. The balance between the Ca(2+) homeostatic systems that are in the supraoptic neurones differ from those active in the terminals, in which mainly Ca(2+) extrusion through the Ca(2+) pump in the plasma membrane and uptake by mitochondria are active. In both AVP and OT nerve terminals, no functional ER Ca(2+) stores can be evidenced experimentally. We conclude that the physiological significance of the complexity of Ca(2+) homeostatic mechanisms in the somatodendritic region of supraoptic neurones and their terminals can be multifaceted, attributable, in major part, to their specialized electrical activity and Ca(2+)-dependent neurohormone release.  相似文献   
99.
100.

Background

The diffusion of antibiotics through the outer membrane is primarily affected by the porin super family, changes contribute to antibiotic resistance. Recently we demonstrated that the CpxAR two-component signaling system alters the expression of an uncharacterized porin OmpCKP, to mediate antimicrobial resistance in K. pneumoniae.

Principal Findings

In this study, functional characterization of the putative porin OmpCKP (denoted kpnO) with respect to antimicrobial susceptibility and virulence was evaluated by generating an isogenic mutant, ΔkpnO in a clinical isolate of K. pneumoniae. Estimation of uronic acid content confirmed that ΔkpnO produced ∼2.0 fold lesser capsular polysaccharide than the wild-type. The ΔkpnO displayed higher sensitivity to hyper osmotic and bile conditions. Disruption of kpnO increased the susceptibility of K. pneumoniae to oxidative and nitrostative stress by ∼1.6 fold and >7 fold respectively. The loss of the Klebsiella porin led to an increase in the minimum inhibitory concentration of tetracycline (3-fold), nalidixic acid (4-fold), tobramycin (4-fold), streptomycin (10-fold), and spectinomycin (10-fold), which could be restored following complementation. The single deletion of kpnO reduced the survival of the pathogen by 50% when exposed to disinfectants. In Caenorhabditis elegans model, the kpnO mutant exhibited significantly (P<0.01) lower virulence. To dissect the role of PhoBR signaling system in regulating the expression of the kpnO, a phoB KP isogenic mutant was constructed. The phoB KP mutant exhibited impaired gastrointestinal stress response and decreased antimicrobial susceptibility. The mRNA levels of kpnO were found to be 4-fold less in phoB KP mutant compared to wild type. A regulatory role of PhoBKP for the expression of kpnO was further supported by the specific binding of PhoBKP to the putative promoter of kpnO.

Conclusions and Significance

Loss of PhoBR regulated porin KpnO resulted in increased antimicrobial resistance, increased susceptibility to gastrointestinal stress, and reduced virulence in K. pneumoniae NTUH-K2044.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号