首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   20篇
  2022年   1篇
  2021年   6篇
  2020年   8篇
  2019年   6篇
  2018年   10篇
  2017年   7篇
  2016年   16篇
  2015年   13篇
  2014年   22篇
  2013年   19篇
  2012年   15篇
  2011年   14篇
  2010年   14篇
  2009年   19篇
  2008年   15篇
  2007年   12篇
  2006年   8篇
  2005年   9篇
  2004年   10篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   7篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1996年   2篇
  1994年   4篇
  1993年   1篇
  1987年   1篇
  1978年   2篇
  1977年   2篇
  1962年   1篇
  1955年   1篇
  1952年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有284条查询结果,搜索用时 593 毫秒
51.
52.
53.
There is increasing scrutiny around how science is communicated to the public. For instance, a Twitter account @justsaysinmice (with 70.4K followers in January 2021) was created to call attention to news headlines that omit that mice, not humans, are the ones for whom the study findings apply. This is the case of many headlines reporting on Alzheimer disease (AD) research. AD is characterized by a degeneration of the human brain, loss of cognition, and behavioral changes, for which no treatment is available. Around 200 rodent models have been developed to study AD, even though AD is an exclusively human condition that does not occur naturally in other species and appears impervious to reproduction in artificial animal models, an information not always disclosed. It is not known what prompts writers of news stories to either omit or acknowledge, in the story’s headlines, that the study was done in mice and not in humans. Here, we raised the hypothesis that how science is reported by scientists plays a role on the news reporting. To test this hypothesis, we investigated whether an association exists between articles’ titles and news’ headlines regarding the omission, or not, of mice. To this end, we analyzed a sample of 623 open-access scientific papers indexed in PubMed in 2018 and 2019 that used mice either as models or as the biological source for experimental studies in AD research. We found a significant association (p < 0.01) between articles’ titles and news stories’ headlines, revealing that when authors omit the species in the paper’s title, writers of news stories tend to follow suit. We also found that papers not mentioning mice in their titles are more newsworthy and significantly more tweeted than papers that do. Our study shows that science reporting may affect media reporting and asks for changes in the way we report about findings obtained with animal models used to study human diseases.

This study reveals that when scientists omit from the papers’ title that research findings were obtained using mice, as opposed to humans, the media tend to replicate the trend by omitting the use of mice from the news stories headlines that report on these papers, thereby perpetuating the misleading omission.  相似文献   
54.
The identification of regions that have undergone selection is one of the principal goals of theoretical and applied evolutionary genetics. Such studies can also provide information about the evolutionary processes involved in shaping genomes, as well as physical and functional information about genes/genomic regions. Domestication followed by breed formation and selection schemes has allowed the formation of very diverse livestock breeds adapted to a wide variety of environments and with special characteristics. The advances in genomics in the last five years have enabled the development of several methods to detect selection signatures and have resulted in the publication of a considerable number of studies involving livestock species. The aims of this review are to describe the principal effects of natural/artificial selection on livestock genomes, to present the main methods used to detect selection signatures and to discuss some recent results in this area. This review should be useful also to research scientists working with wild animals/non-domesticated species and plant biologists working with breeding and evolutionary biology.  相似文献   
55.
International Journal of Primatology - Ongoing environmental changes may reduce the population size and geographic distribution of many ecologically sensitive species. Predicting where populations...  相似文献   
56.
Despite the widespread use of ecological niche models (ENMs) for predicting the responses of species to climate change, these models do not explicitly incorporate any population‐level mechanism. On the other hand, mechanistic models adding population processes (e.g. biotic interactions, dispersal and adaptive potential to abiotic conditions) are much more complex and difficult to parameterize, especially if the goal is to predict range shifts for many species simultaneously. In particular, the adaptive potential (based on genetic adaptations, phenotypic plasticity and behavioral adjustments for physiological responses) of local populations has been a less studied mechanism affecting species’ responses to climatic change so far. Here, we discuss and apply an alternative macroecological framework to evaluate the potential role of evolutionary rescue under climate change based on ENMs. We begin by reviewing eco‐evolutionary models that evaluate the maximum sustainable evolutionary rate under a scenario of environmental change, showing how they can be used to understand the impact of temperature change on a Neotropical anuran species, the Schneider's toad Rhinella diptycha. Then we show how to evaluate spatial patterns of species’ geographic range shift using such models, by estimating evolutionary rates at the trailing edge of species distribution estimated by ENMs and by recalculating the relative amount of total range loss under climate change. We show how different models can reduce the expected range loss predicted for the studied species by potential ecophysiological adaptations in some regions of the trailing edge predicted by ENMs. For general applications, we believe that parameters for large numbers of species and populations can be obtained from macroecological generalizations (e.g. allometric equations and ecogeographical rules), so our framework coupling ENMs with eco‐evolutionary models can be applied to achieve a more accurate picture of potential impacts from climate change and other threats to biodiversity.  相似文献   
57.
Leptin is an adipokine that acts in the central nervous system and regulates energy balance. Animal models and human observational studies have suggested that leptin surge in the perinatal period has a critical role in programming long-term risk of obesity. In utero exposure to maternal hyperglycemia has been associated with increased risk of obesity later in life. Epigenetic mechanisms are suspected to be involved in fetal programming of long term metabolic diseases. We investigated whether DNA methylation levels near LEP locus mediate the relation between maternal glycemia and neonatal leptin levels using the 2-step epigenetic Mendelian randomization approach. We used data and samples from up to 485 mother-child dyads from Gen3G, a large prospective population-based cohort. First, we built a genetic risk score to capture maternal glycemia based on 10 known glycemic genetic variants (GRS10) and showed it was an adequate instrumental variable (β = 0.046 mmol/L of maternal fasting glucose per additional risk allele; SE = 0.007; P = 7.8 × 10−11; N = 467). A higher GRS10 was associated with lower methylation levels at cg12083122 located near LEP (β = −0.072 unit per additional risk allele; SE = 0.04; P = 0.05; N = 166). Direction and effect size of association between the instrumental variable GRS10 and methylation at cg12083122 were consistent with the negative association we observed using measured maternal glycemia. Lower DNA methylation levels at cg12083122 were associated with higher cord blood leptin levels (β = −0.17 log of cord blood leptin per unit; SE = 0.07; P = 0.01; N = 170). Our study supports that maternal glycemia is part of causal pathways influencing offspring leptin epigenetic regulation.  相似文献   
58.
We previously showed that patients with temporal lobe epilepsy (TLE) present an increased expression of angiotensin II (AngII) AT1 and AT2 receptors in the hippocampus, supporting the idea of an upregulation of renin-angiotensin system (RAS) in this disease. This study aimed to verify the relationship between the RAS and TLE during epileptogenesis. Levels of the peptides angiotensin I (AngI), angiotensin II (AngII) and angiotensin 1-7 (Ang 1-7), were detected by HPLC assay. Angiotensin AT1 and AT2 receptors, Mas mRNA receptors and angiotensin converting enzyme (ACE), tonin and neutral endopeptidase (NEP) mRNA were also quantified at the hippocampus of Wistar rats by real time PCR, during acute (n=10), silent (n=10) and chronic (n=10) phases of pilocarpine-induced epilepsy. We observed an increased peptide level of Ang1-7 into acute and silent phases, decreasing importantly (p≤0.05) in the chronic phase, suggesting that AngI may be converted into Ang 1-7 by NEP, which is present in high levels in these periods. Our results also showed increased peptide level of AngII in the chronic phase of this model. In contraposition, the ACE expression is reduced in all periods. These data suggest that angiotensinogen or AngI may be cleaved to AngII by tonin, which showed increased expression in all phases. We found changes in AT1, AT2 and Mas mRNA receptors levels suggesting that Ang1-7 could act at Mas receptor during the silent period. Herein, we demonstrated for the first time, changes in angiotensin-related peptides, their receptors as well as the releasing enzymes in the hippocampus of rats during pilocarpine-induced epilepsy.  相似文献   
59.
60.
End binding proteins (EBs) are highly conserved core components of microtubule plus-end tracking protein networks. Here we investigated the roles of the three mammalian EBs in controlling microtubule dynamics and analyzed the domains involved. Protein depletion and rescue experiments showed that EB1 and EB3, but not EB2, promote persistent microtubule growth by suppressing catastrophes. Furthermore, we demonstrated in vitro and in cells that the EB plus-end tracking behavior depends on the calponin homology domain but does not require dimer formation. In contrast, dimerization is necessary for the EB anti-catastrophe activity in cells; this explains why the EB1 dimerization domain, which disrupts native EB dimers, exhibits a dominant-negative effect. When microtubule dynamics is reconstituted with purified tubulin, EBs promote rather than inhibit catastrophes, suggesting that in cells EBs prevent catastrophes by counteracting other microtubule regulators. This probably occurs through their action on microtubule ends, because catastrophe suppression does not require the EB domains needed for binding to known EB partners.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号