首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   9篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   2篇
  2015年   8篇
  2014年   12篇
  2013年   6篇
  2012年   11篇
  2011年   13篇
  2010年   9篇
  2009年   6篇
  2008年   3篇
  2007年   6篇
  2006年   10篇
  2005年   10篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有133条查询结果,搜索用时 62 毫秒
11.
Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) is a parasite-derived protein that appears on the cytoplasmic surface of the host cell membrane in the later stages of the parasite's development where it associates with membrane skeleton. We have recently demonstrated that a 60-residue fragment (FIa1, residues 38-97) of PfEMP3 bound to spectrin. Here we show that this polypeptide binds specifically to a site near the C terminus of alpha-spectrin at the point that spectrin attaches to actin and protein 4.1R in forming the junctions of the membrane skeletal network. We further show that this polypeptide disrupts formation of the ternary spectrin-actin-4.1R complex in solution. Importantly, when incorporated into the cell, the PfEMP3 fragment causes extensive reduction in shear resistance of the cell. We conjecture that the loss of mechanical cohesion of the membrane may facilitate the exit of the mature merozoites from the cell.  相似文献   
12.
In this review we summarize the current understanding of a novel integrative function of Fibroblast Growth Factor Receptor‐1 (FGFR1) and its partner CREB Binding Protein (CBP) acting as a nuclear regulatory complex. Nuclear FGFR1 and CBP interact with and regulate numerous genes on various chromosomes. FGFR1 dynamic oscillatory interactions with chromatin and with specific genes, underwrites gene regulation mediated by diverse developmental signals. Integrative Nuclear FGFR1 Signaling (INFS) effects the differentiation of stem cells and neural progenitor cells via the gene‐controlling Feed‐Forward‐And‐Gate mechanism. Nuclear accumulation of FGFR1 occurs in numerous cell types and disruption of INFS may play an important role in developmental disorders such as schizophrenia, and in metastatic diseases such as cancer. Enhancement of INFS may be used to coordinate the gene regulation needed to activate cell differentiation for regenerative purposes or to provide interruption of cancer stem cell proliferation. J. Cell. Physiol. 230: 989–1002, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   
13.
A series of 1,1-diarylalkene derivatives were prepared to optimize the properties of CC-5079 (1), a dual inhibitor of tubulin polymerization and phosphodiesterase 4 (PDE4). By using the 3-ethoxy-4-methoxyphenyl PDE4 pharmacophore as one of the aromatic rings, a significant improvement in PDE4 inhibition was achieved. Compound 28 was identified as a dual inhibitor with potent PDE4 (IC(50)=54 nM) and antitubulin activity (HCT-116 IC(50)=34 nM and tubulin polymerization IC(50) ~1 μM). While the nitrile group at the alkene terminus was generally required for potent antiproliferative activity, its replacement was tolerated if there was a hydroxyl or amino group on one of the aryl rings. Conveniently, this group could also serve as a handle for amino acid derivatization to improve the compounds' solubility. The glycinamide analog 45 showed significant efficacy in the HCT-116 xenograft model, with 64% inhibition of tumor growth upon dosing at 20 mg/kg qd.  相似文献   
14.
Nutrient sensing and coordination of metabolic pathways are crucial functions for all living cells, but details of the coordination under different environmental conditions remain elusive. We therefore undertook a systems biology approach to investigate the interactions between the Snf1 and the target of rapamycin complex 1 (TORC1) in Saccharomyces cerevisiae. We show that Snf1 regulates a much broader range of biological processes compared with TORC1 under both glucose‐ and ammonium‐limited conditions. We also find that Snf1 has a role in upregulating the NADP+‐dependent glutamate dehydrogenase (encoded by GDH3) under derepressing condition, and therefore may also have a role in ammonium assimilation and amino‐acid biosynthesis, which can be considered as a convergence of Snf1 and TORC1 pathways. In addition to the accepted role of Snf1 in regulating fatty acid (FA) metabolism, we show that TORC1 also regulates FA metabolism, likely through modulating the peroxisome and β‐oxidation. Finally, we conclude that direct interactions between Snf1 and TORC1 pathways are unlikely under nutrient‐limited conditions and propose that TORC1 is repressed in a manner that is independent of Snf1.  相似文献   
15.
The simultaneous utilization of efficient respiration and inefficient fermentation even in the presence of abundant oxygen is a puzzling phenomenon commonly observed in bacteria, yeasts, and cancer cells. Despite extensive research, the biochemical basis for this phenomenon remains obscure. We hypothesize that the outcome of a competition for membrane space between glucose transporters and respiratory chain (which we refer to as economics of membrane occupancy) proteins influences respiration and fermentation. By incorporating a sole constraint based on this concept in the genome‐scale metabolic model of Escherichia coli, we were able to simulate respiro‐fermentation. Further analysis of the impact of this constraint revealed differential utilization of the cytochromes and faster glucose uptake under anaerobic conditions than under aerobic conditions. Based on these simulations, we propose that bacterial cells manage the composition of their cytoplasmic membrane to maintain optimal ATP production by switching between oxidative and substrate‐level phosphorylation. These results suggest that the membrane occupancy constraint may be a fundamental governing constraint of cellular metabolism and physiology, and establishes a direct link between cell morphology and physiology.  相似文献   
16.
Plasmodium falciparum dramatically modifies the structure and function of the membrane of the parasitized host erythrocyte. Altered membrane properties are the consequence of the interaction of a group of exported malaria proteins with host cell membrane proteins. KAHRP (the knob-associated histidine-rich protein), a member of this group, has been shown to interact with erythrocyte membrane skeletal protein spectrin. However, the molecular basis for this interaction has yet to be defined. In the present study, we defined the binding motifs in both KAHRP and spectrin and identified a functional role for this interaction. We showed that spectrin bound to a 72-amino-acid KAHRP fragment (residues 370-441). Among nine-spectrin fragments, which encompass the entire alpha and beta spectrin molecules (four alpha spectrin and five beta spectrin fragments), KAHRP bound only to one, the alpha N-5 fragment. The KAHRP-binding site within the alpha N-5 fragment was localized uniquely to repeat 4. The interaction of full-length spectrin dimer to KAHRP was inhibited by repeat 4 of alpha spectrin. Importantly, resealing of this repeat peptide into erythrocytes mislocalized KAHRP in the parasitized cells. We concluded that the interaction of KAHRP with spectrin is critical for appropriate membrane localization of KAHRP in parasitized erythrocytes. As the presence of KAHRP at the erythrocyte membrane is necessary for cytoadherence in vivo, our findings have implications for the development of new therapies for mitigating the severity of malaria infection.  相似文献   
17.
An X  Debnath G  Guo X  Liu S  Lux SE  Baines A  Gratzer W  Mohandas N 《Biochemistry》2005,44(31):10681-10688
The ternary complex of spectrin, F-actin, and protein 4.1R defines the erythrocyte membrane skeletal network, which governs the stability and elasticity of the membrane. It has been shown that both 4.1R and actin bind to the N-terminal region (residues 1-301) of the spectrin beta chain, which contains two calponin homology domains, designated CH1 and CH2. Here, we show that 4.1R also binds to the separate CH1 and CH2 domains. Unexpectedly, truncation of the CH2 domain by its 20 amino acids, corresponding to its N-terminal alpha helix, was found to greatly enhance its binding to 4.1R. The intact N terminus and the CH1 but not the CH2 domain bind to F-actin, but again, deletion of the first 20 amino acids of the latter exposes an actin-binding activity. As expected, the polypeptide 1-301 inhibits the binding of spectrin dimer to actin and formation of the spectrin-actin-4.1R ternary complex in vitro. Furthermore, the binding of 4.1R to 1-301 is greatly enhanced by PIP(2), implying the existence of a regulatory switch in the cell.  相似文献   
18.
19.
A series of cysteine chloromethyl ketone compounds with a systematic variation of the S-alkyl chain length have been synthesized in order to gauge the effect of the alkyl chain length on the cytotoxicity of these compounds against human acute lymphoblastic leukemia cells. Comparable activities were observed for compounds with S-alkyl chains ranging from pentyl to dodecyl, with the best being undecyl (IC50= 1.7 microM) and dodecyl (IC50=2.0 microM) against B-lineage leukemia cells and hexyl (IC50 = 0.7 microM) against T-lineage leukemia cells.  相似文献   
20.
A novel mono-THF containing synthetic anticancer drug (WHI-261) was designed for targeting a previously unrecognized unique narrow binding cavity on the surface of tubulin. The anti-cancer activity of WHI-261 was confirmed using MTT assays. The structure-based design, synthesis, and biological activity of WHI-261 are reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号